Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approximate Analytical Solution for SVFSAO Pricing
- Time Window before T − A
- Time Window After T − A
2.2. Approximate Analytical Solution for Hedging the SVFSAO
3. Results
3.1. Differences in Pricing between Constant-Volatility FSAOs and SVFSAOs
3.2. Comparison of the Delta Value of FSAO between Constant and Stochastic Volatility Conditions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of Hedge Ratio—Delta
References
- Bernales, A. Make-take Decisions under High-frequency Trading Competition. J. Finance Mark. 2019, 45, 1–18. [Google Scholar] [CrossRef]
- Shafi, K.; Latif, N.; Shad, S.A.; Idrees, Z. High-frequency trading: Inverse relationship of the financial markets. Phys. A Stat. Mech. Appl. 2019, 527, 121067. [Google Scholar] [CrossRef]
- Bibinger, M.; Hautsch, N.; Malec, P.; Reiss, M. Estimating the Spot Covariation of Asset Prices—Statistical Theory and Empirical Evidence. J. Bus. Econ. Stat. 2019, 37, 419–435. [Google Scholar] [CrossRef]
- Said, E.; Ayed, A.B.H.; Thillou, D.; Rabeyrin, J.-J.; Abergel, F. Market Impact: A Systematic Study of the High Frequency Options Market. Quant. Finance 2020, 21, 1–16. [Google Scholar] [CrossRef]
- Chaboud, A.P.; Chiquoine, B.; Hjalmarson, E.; Vega, C. Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market. J. Finance 2014, 69, 2045–2084. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, M.; Mollner, J. High-Frequency Trading and Market Performance. J. Finance 2020, 75, 1495–1523. [Google Scholar] [CrossRef] [Green Version]
- Corsaro, S.; Kyriakou, I.; Marazzina, D.; Marino, Z. A general framework for pricing Asian options under stochastic volatility on parallel architectures. Eur. J. Oper. Res. 2019, 272, 1082–1095. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Analytical valuation of Asian options with counterparty risk under stochastic volatility models. J. Futures Mark. 2020, 40, 410–429. [Google Scholar] [CrossRef]
- Yao, N.; Ling, Z.; Zhang, J.; Xizo, M. Short maturity conditional Asian options in local volatility models. Math. Finance Econ. 2020, 14, 307–328. [Google Scholar] [CrossRef]
- Heston, S.L. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Finance Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Kemna, A.; Vorst, A. A pricing method for options based on average asset prices. J. Bank. Finance 1990, 2, 52–66. [Google Scholar]
- Rogers, L.C.G.; Shi, Z. The value of an Asian option. J. Appl. Probab. 1995, 32, 1077–1088. [Google Scholar] [CrossRef]
- Hoogland, J.K.; Neumann, C.D.D. Local scale invariance and contingent claim pricing. Int. J. Theor. Appl. Finance 2001, 4, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hoogland, J.K.; Neumann, C.D.D. ; Neumann, C.D.D. Local scale invariance and contingent claim pricing II. Int. J. Theor. Appl. Finance 2001, 4, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Vecer, J. A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 2001, 4, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Vecer, J. Unified pricing of Asian options risk. J. Comput. Finance 2001, 4, 113–116. [Google Scholar]
- Linetsky, V. Pricing Equity Derivatives Subject to Bankruptcy. Math. Finance 2006, 16, 255–282. [Google Scholar] [CrossRef] [Green Version]
- Vanmaele, M.; Deelstra, G.; Liinev, J.; Dhaene, J.; Goovaerts, M.J. Bounds for the price of discrete arithmetic Asian options. J. Comput. Finance 2006, 185, 51–90. [Google Scholar] [CrossRef]
- Hull, J.; White, A. The Pricing of Options on Assets with Stochastic Volatilities. J. Finance 1987, 42, 281–300. [Google Scholar] [CrossRef]
- Stein, E.M.; Stein, J.C. Stock Price Distributions with Stochastic Volatility: An Analytic Approach. Rev. Financ. Stud. 1991, 4, 727–752. [Google Scholar] [CrossRef]
- Turnbull, S.; Wakeman, L. A quick algorithm for pricing European average options. J. Financ. Quant. Anal. 1991, 26, 377–389. [Google Scholar] [CrossRef]
- Ritchken, P.; Sankarasubramanian, L.; Vijh, A.M. The valuation of path dependent contracts on the average. Manag. Sci. 1993, 39, 1202–1213. [Google Scholar] [CrossRef]
- Milevsky, M.A.; Posner, S.E. Asian options, the sum of lognormals, and the reciprocal gamma distribution. J. Financ. Quant. Anal. 1998, 33, 409–422. [Google Scholar] [CrossRef]
- Fouque, J.P.; Han, C.H. Pricing Asian options with stochastic volatility. Quant. Finance 2003, 3, 353–362. [Google Scholar] [CrossRef]
- Tsao, C.Y.; Chang, C.C.; Lin, C.G. Analytic Approximation Formulae for Pricing Forward Starting Asian option. J. Futures Mark. 2003, 23, 487–516. [Google Scholar] [CrossRef]
- Sun, J.; Chen, L.; Li, S. A quasi-analytical pricing model for arithmetic Asian options. J. Futures Mark. 2013, 33, 1143–1166. [Google Scholar] [CrossRef]
- Li, W.; Chen, S. Pricing and hedging of arithmetic Asian options via the Edgeworth series expansion approach. J. Financ. Data Sci. 2016, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.G.; Chang, C.C. Approximate Analytic Solution for Asian Options with Stochastic Volatility. North Am. J. Econ. Finance 2019, 54, 100949. [Google Scholar] [CrossRef]
- Aprahamian, H.; Maddah, B. Pricing Asian options via compound gamma and orthogonal polynomials. Appl. Math. Comput. 2015, 264, 21–43. [Google Scholar] [CrossRef]
- Dufresne, D. Laguerre series for Asian and other options. Math. Finance 1999, 10, 407–428. [Google Scholar] [CrossRef]
- Willems, S. Asian Option Pricing with Orthogonal Polynomials. Quant. Finance 2019, 19, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Broadie, M.; Kaya, O. Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes. Oper. Res. 2006, 54, 217–231. [Google Scholar] [CrossRef]
- Kouritzin, M.A. Explicit Heston solutions and stochastic approximation for path-dependent option pricing. Int. J. Theor. Appl. Finance 2018, 21, 217–231. [Google Scholar] [CrossRef]
- Kouarfate, R.; Kouritzin, A.; Mackay, A. Explicit Solution Method for the 3/2 Model; Cornell University: Ithaca, NY, USA, 2020. [Google Scholar]
- Kirkby, J.L.; Nguyen, D. Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models. Ann. Finance 2020, 16, 307–351. [Google Scholar] [CrossRef]
(1) | (2) | (3) | (4) | (5) | ||
---|---|---|---|---|---|---|
MC(SV) | MC(CV) | Diff Ratio (2) − (1)/(2) | Time (SV) | Time (CV) | ||
0 | 0.3 | 4.96240 | 4.98923 | 0.537758% | 28.83718 | 11.98062 |
(0.02769) | (0.02047) | |||||
0.6 | 4.88633 | 4.98923 | 2.062443% | 28.67936 | 11.97470 | |
(0.02786) | (0.02047) | |||||
0.9 | 4.76376 | 4.98923 | 4.519134% | 28.41344 | 11.96720 | |
(0.028) | (0.02047) | |||||
0.1 | 0.3 | 5.08854 | 4.98923 | −1.990488% | 28.78062 | 11.96250 |
(0.02862) | (0.02047) | |||||
0.6 | 5.00971 | 4.98923 | −0.410484% | 28.68312 | 11.96968 | |
(0.02881) | (0.02047) | |||||
0.9 | 4.88268 | 4.98923 | 2.135600% | 28.41344 | 11.96500 | |
(0.02895) | (0.02047) | |||||
0.2 | 0.3 | 5.21888 | 4.98923 | −4.602915% | 28.76970 | 11.96500 |
(0.0296) | (0.02047) | |||||
0.6 | 5.13721 | 4.98923 | −2.965989% | 28.68812 | 11.96812 | |
(0.02978) | (0.02047) | |||||
0.9 | 5.00558 | 4.98923 | −0.327706% | 28.41032 | 11.95906 | |
(0.02994) | (0.02047) |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
T (Days) | MC | ASC | Diff Ratio (2) − (1)/(1) | Time (MC) | Time (AAS) | Efficiency = (4)/(5) |
30 | 1.83410 | 1.837416 | 0.180797% | 57.28814 | 2.343 × 10−5 | 2.445 × 106 |
(0.0097) | ||||||
90 | 3.36440 | 3.377293 | 0.383218% | 57.51626 | 2.281 × 10−5 | 2.522 × 106 |
(0.018) | ||||||
120 | 3.96357 | 3.981609 | 0.455120% | 57.48656 | 2.312 × 10−5 | 2.486 × 106 |
(0.02133) | ||||||
240 | 5.94518 | 5.980835 | 0.599730% | 57.19782 | 2.500 × 10−5 | 2.288 × 106 |
(0.03275) |
(1) | (2) | (3) | ||
---|---|---|---|---|
Delta (CV) | Delta (SV) | Diff Ratio (2) − (1)/(1) | ||
0.2 | 0.2 | 1.4381 × 10−19 | 3.4619 × 10−19 | 140.7296% |
0.4 | 1.4381 × 10−19 | 1.1246 × 10−18 | 682.0450% | |
0.6 | 1.4381 × 10−19 | 3.0113 × 10−18 | 1993.9933% | |
0.8 | 1.4381 × 10−19 | 6.9566 × 10−18 | 4737.4300% | |
0.3 | 0.2 | 1.0431 × 10−9 | 1.3115 × 10−9 | 25.7356% |
0.4 | 1.0431 × 10−9 | 2.2116 × 10−9 | 112.0294% | |
0.6 | 1.0431 × 10−9 | 4.0376 × 10−9 | 287.0919% | |
0.8 | 1.0431 × 10−9 | 7.3144 × 10−9 | 601.2435% | |
0.4 | 0.2 | 3.3847 × 10−6 | 3.6421 × 10−6 | 7.6060% |
0.4 | 3.3847 × 10−6 | 4.4579 × 10−6 | 31.7077% | |
0.6 | 3.3847 × 10−6 | 5.9667 × 10−6 | 76.2859% | |
0.8 | 3.3847 × 10−6 | 8.4084 × 10−6 | 148.4258% | |
0.5 | 0.2 | 1.5510 × 10−4 | 1.5954 × 10−4 | 2.8660% |
0.4 | 1.5510 × 10−4 | 1.7323 × 10−4 | 11.6924% | |
0.6 | 1.5510 × 10−4 | 1.9726 × 10−4 | 27.1859% | |
0.8 | 1.5510 × 10−4 | 2.3357 × 10−4 | 50.5983% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-C.; Lin, C.-G.; Kuo, T.-J. Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading. Mathematics 2020, 8, 2251. https://doi.org/10.3390/math8122251
Hsu C-C, Lin C-G, Kuo T-J. Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading. Mathematics. 2020; 8(12):2251. https://doi.org/10.3390/math8122251
Chicago/Turabian StyleHsu, Chih-Chen, Chung-Gee Lin, and Tsung-Jung Kuo. 2020. "Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading" Mathematics 8, no. 12: 2251. https://doi.org/10.3390/math8122251
APA StyleHsu, C. -C., Lin, C. -G., & Kuo, T. -J. (2020). Pricing of Arithmetic Asian Options under Stochastic Volatility Dynamics: Overcoming the Risks of High-Frequency Trading. Mathematics, 8(12), 2251. https://doi.org/10.3390/math8122251