Persistence for a Two-Stage Reaction-Diffusion System
Abstract
:1. Introduction
2. Basic Properties
3. The Case of Small
4. The Case of and Large
5. General Diffusion Rates
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cantrell, R.S.; Cosner, C. Spatial Ecology via Reaction-Diffusion Equations; John Wiley and Sons: Chichester, UK, 2003. [Google Scholar]
- Cosner, C. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discret. Cont. Dyn. Syst. A 2014, 34, 1701–1745. [Google Scholar] [CrossRef]
- He, X.; Ni, W.-M. Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and Spatial Heterogeneity I. Commun. Pure Appl. Math. 2016, 69, 981–1014. [Google Scholar] [CrossRef]
- Dockery, J.; Hutson, V.; Mischaikow, K.; Pernarowski, M. The evolution of slow dispersal rates: A reaction diffusion model. J. Math. Biol. 1998, 37, 61–83. [Google Scholar] [CrossRef]
- Hastings, A. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 1983, 24, 244–251. [Google Scholar] [CrossRef]
- Altenberg, L. Resolvent positive linear operators exhibit the reduction phenomenon. Proc. Natl. Acad. Sci. USA 2012, 109, 3705–3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood-Lee, J.; Taylor, P.D. The evolution of dispersal in spatially varying environments. Evol. Ecol. Res. 2001, 3, 649–665. [Google Scholar]
- Brown, K.J.; Zhang, Y. On a system of reaction–diffusion equations describing a population with two age groups. J. Math. Anal. Appl. 2003, 282, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, R.S.; Cosner, C.; Yu, X. Dynamics of populations with individual variation in dispersal on bounded domains. J. Biol. Dyn. 2018, 12, 288–317. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, R.S.; Cosner, C.; Yu, X. Populations with individual variation in dispersal in heterogeneous environments: Dynamics and competition with simply diffusing populations. Sci. China Math. 2020, 63, 441–464. [Google Scholar] [CrossRef] [Green Version]
- Gurtin, M.E. A system of equations for age-dependent population diffusion. J. Theor. Biol. 1973, 40, 389–392. [Google Scholar] [CrossRef]
- Kunisch, K.; Schappacher, W.; Webb, G.F. Nonlinear age-dependent population dynamics with random diffusion. Comput. Math. Appl. 1985, 11, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Langlais, M. A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 1985, 16, 510–529. [Google Scholar] [CrossRef]
- Yan, S.; Guo, S. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discret. Contin. Dyn. Syst. B 2018, 23, 1559–1579. [Google Scholar] [CrossRef] [Green Version]
- López-Gómez, J.; Molina-Meyer, M. The maximum principle for cooperative weakly coupled elliptic systems and some applications. Differ. Int. Equ. 1994, 7, 383–398. [Google Scholar]
- Molina-Meyer, M. Global attractivity and singular perturbation for a class of nonlinear cooperative systems. J. Differ. Equ. 1996, 128, 347–378. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, R.S.; Cosner, C. On the effects of spatial heterogeneity on the coexistence of competing species. J. Math. Biol. 1998, 37, 103–145. [Google Scholar] [CrossRef]
- Fernández-Rincón, S.; López-Gómez, J. A singular perturbation result in competition theory. J. Math. Anal. Appl. 2017, 445, 280–296. [Google Scholar] [CrossRef]
- Hutson, V.; López-Gómez, J.; Mischaikow, K.; Vickers, G. Limit Behavior for a Competing Speces Problem with Diffusion. In Dynamical Systems and Applications; Agarwal, R.P., Ed.; World Sci. Publishing: Hackensack, NJ, USA, 1995; pp. 343–358. [Google Scholar]
- Chen, S.; Shi, J. Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment. arXiv 2019, arXiv:1909.10107. [Google Scholar]
- Magal, P.; Webb, G.F.; Wu, Y.-X. On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 2019, 79, 284–304. [Google Scholar] [CrossRef]
- Hei, L.J.; Wu, J.H. Existence and stability of positive solutions for an elliptic cooperative system. Acta Math. Sin. Engl. Ser. 2005, 21, 1113–1120. [Google Scholar] [CrossRef]
- Lam, K.-Y.; Lou, Y. Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications. J. Dyn. Differ. Equ. 2016, 29, 29–48. [Google Scholar] [CrossRef]
- Cantrell, R.S.; Cosner, C.; Lou, Y. Evolution of dispersal and the ideal free distribution. Math. Biosci. Eng. 2010, 7, 17–36. [Google Scholar] [PubMed]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 108, 29–48. [Google Scholar] [CrossRef]
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 1943, 35, 99–110. [Google Scholar]
- Derpanis, K.G. The Bhattacharyya measure. Mendeley Comput. 2008, 1, 1990–1992. [Google Scholar]
- Smith, H. Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems; Mathematical Surveys and Monographs, 41; American Mathematical Society: Providence, RI, USA, 1995. [Google Scholar]
- Hutson, V.; Mischaikow, K.; Polácik, P. The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 2001, 43, 501–533. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantrell, R.S.; Cosner, C.; Martínez, S. Persistence for a Two-Stage Reaction-Diffusion System. Mathematics 2020, 8, 396. https://doi.org/10.3390/math8030396
Cantrell RS, Cosner C, Martínez S. Persistence for a Two-Stage Reaction-Diffusion System. Mathematics. 2020; 8(3):396. https://doi.org/10.3390/math8030396
Chicago/Turabian StyleCantrell, Robert Stephen, Chris Cosner, and Salomé Martínez. 2020. "Persistence for a Two-Stage Reaction-Diffusion System" Mathematics 8, no. 3: 396. https://doi.org/10.3390/math8030396
APA StyleCantrell, R. S., Cosner, C., & Martínez, S. (2020). Persistence for a Two-Stage Reaction-Diffusion System. Mathematics, 8(3), 396. https://doi.org/10.3390/math8030396