Stability of Replicator Dynamics with Bounded Continuously Distributed Time Delay
Abstract
:1. Introduction
2. Replicator Dynamics with Bounded Continuously Distributed Delays
2.1. The Mathematical Model
2.2. Stability Analysis-Special Case
2.3. Stability Analysis-General Case
3. Numerical Example
3.1. Special Case
3.2. General Case
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aumann, R.J. Rationality and bounded rationality. Games Econ. Behav. 1997, 21, 2–14. [Google Scholar] [CrossRef]
- Maynard Smith, J. The theory of games and the evolution of animal conflicts. J. Theor. Biol. 1974, 47, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Haigh, J. Game theory and evolution. Adv. Appl. Probab. 1975, 7, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Vickers, G.T.; Cannings, C. On the definition of an evolutionarily stable strategy. J. Theor. Biol. 1987, 129, 349–353. [Google Scholar] [CrossRef]
- Hines, W.G.S. Evolutionary stable strategies: A review of basic theory. Theor. Popul. Biol. 1987, 31, 195–272. [Google Scholar] [CrossRef]
- Iqbal, A.; Toor, A.H. Evolutionarily stable strategies in quantum games. Phys. Lett. A. 2001, 280, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, J.L.; Hazel, W. The status of the conditional evolutionarily stable strategy. Trends. Ecol. Evol. 2007, 22, 522–528. [Google Scholar] [CrossRef]
- Taylor, P.D.; Jonker, L.B. Evolutionary stable strategies and game dynamics. Math. Biosci. 1978, 40, 145–156. [Google Scholar] [CrossRef]
- Friedman, D. Evolutionary games in economics. Econometrica 1991, 59, 637–666. [Google Scholar] [CrossRef] [Green Version]
- Hofbauer, J.; Weibull, J.W. Evolutionary selection against dominated strategies. J. Econ. Theory 1996, 71, 558–5739. [Google Scholar] [CrossRef] [Green Version]
- Hofbauer, J.; Sigmund, K. Evolutionary game dynamics. Bull. Am. Math. Soc. 2003, 40, 479–519. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Newton, J. Payoff-dependent dynamics and coordination games. Econ Theory 2017, 64, 589–604. [Google Scholar] [CrossRef] [Green Version]
- Mertikopoulos, P.; Sandholm, W.H. Riemannian game dynamics. J. Econ. Theory 2018, 177, 315–364. [Google Scholar] [CrossRef] [Green Version]
- Weibull, J. Evolutionary Game Theory; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Sandholm, W.H. Population Games and Evolutionary Dynamics; Economic Learning and Social Evolution; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Tanimoto, J. Fundamentals of Evolutionary Game Theory and its Applications; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Newton, J. Evolutionary Game Theory: A Renaissance. Games 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, J.; Sagara, H. Relationship between dilemma occurrence and the existence of a weakly dominant strategy in a two-player symmetric game. Biosystems 2007, 90, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Nowak, M. Transforming the Dilemma. Evolution 2007, 61, 2281–2292. [Google Scholar] [CrossRef]
- Wang, Z.; Kokubo, S.; Jusup, M.; Tanimoto, J. Universal scaling for the dilemma strength in evolutionary games. Phys. Life. Rev. 2015, 14, 1–30. [Google Scholar] [CrossRef]
- Németh, A.; Takács, K. The paradox of cooperation benefits. J. Theor. Biol. 2010, 264, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Hammoud, A.; Mourad, A.; Otrok, H.; Wahab, O.A.; Harmanani, H. Cloud federation formation using genetic and evolutionary game theoretical models. Future Gener. Comp. Syst. 2020, 104, 92–104. [Google Scholar] [CrossRef]
- Bogomolnaia, A.; Jackson, M.O. The stability of hedonic coalition structures. Games Econ. Behav. 2002, 38, 201–230. [Google Scholar] [CrossRef] [Green Version]
- Diamantoudi, E.; Xue, L. Farsighted stability in hedonic games. Soc Choice Welf. 2003, 21, 39–61. [Google Scholar] [CrossRef]
- Wahab, O.A.; Bentahar, J.; Otrok, H.; Mourad, A. Towards trustworthy multi-cloud services communities: A trust-based hedonic coalitional game. IEEE Trans. Serv. Comput. 2018, 11, 184–210. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Z. Effect of time delay and evolutionarily stable strategy. J. Theor. Biol. 1997, 187, 111–116. [Google Scholar] [CrossRef]
- Alboszta, J.; Miȩkisz, Z. Stability of evolutionarily stable strategies in discrete replicator dynamics with time delay. J. Theor. Biol. 2004, 187, 175–179. [Google Scholar]
- Ben Khalifa, N.; El-Azouzi, R.; Hayel, Y.; Mabrouki, I. Evolutionary games in interacting communities. Dyn. Games Appl. 2017, 7, 131–156. [Google Scholar] [CrossRef]
- Burridge, J.; Gao, Y.; Mao, Y. Delayed response in the Hawk Dove game. Eur. Phys. J. B 2017, 90, 13. [Google Scholar] [CrossRef] [Green Version]
- Ben Khalifa, N.; El-Azouzi, R.; Hayel, Y. Discrete and continuous distributed delays in replicator dynamics. Dyn. Games Appl. 2018, 8, 713–732. [Google Scholar] [CrossRef]
- Hale, J.K.; Verduyn Lunel, S.M. Introduction to Functional Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1993. [Google Scholar]
- Wahab, O.A.; Bentahar, J.; Otrok, H.; Mourad, A. A Stackelberg game for distributed formation of business-driven services communities. Expert Syst. Appl. 2016, 45, 359–372. [Google Scholar] [CrossRef]
- Wahab, O.A.; Bentahar, J.; Otrok, H.; Mourad, A. Resource-Aware detection and defense system against multi-type attacks in the cloud: Repeated Bayesian Stackelberg game. IEEE Trans. Depend. Secure Comput. 2019. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Yang, H.; Liu, Z.; Wu, J. Stability of Replicator Dynamics with Bounded Continuously Distributed Time Delay. Mathematics 2020, 8, 431. https://doi.org/10.3390/math8030431
Zhong C, Yang H, Liu Z, Wu J. Stability of Replicator Dynamics with Bounded Continuously Distributed Time Delay. Mathematics. 2020; 8(3):431. https://doi.org/10.3390/math8030431
Chicago/Turabian StyleZhong, Chongyi, Hui Yang, Zixin Liu, and Juanyong Wu. 2020. "Stability of Replicator Dynamics with Bounded Continuously Distributed Time Delay" Mathematics 8, no. 3: 431. https://doi.org/10.3390/math8030431
APA StyleZhong, C., Yang, H., Liu, Z., & Wu, J. (2020). Stability of Replicator Dynamics with Bounded Continuously Distributed Time Delay. Mathematics, 8(3), 431. https://doi.org/10.3390/math8030431