TPLVM: Portfolio Construction by Student’s t-Process Latent Variable Model
Abstract
:1. Introduction
2. Short Review of Gaussian Process
2.1. Gaussian Process
2.2. Gaussian Process Latent Variable Model
3. Proposed Model: Student’s t-Process Latent Variable Model
3.1. Introduction of the Student’s t-Process
3.2. Student’s t-Process Latent Variable Model
3.3. Variational Inference
4. Problem Formulation in Finance
4.1. Factor Model
4.2. Portfolio Theory
5. Experiment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GARCH | Generalized AutoRegressive Conditional Heteroscedasticity |
DCC | Dynamic Conditional Correlation |
GPLVM | Gaussian Process Latent Variable Model |
TPLVM | Student’s t-Process Latent Variable Model |
References
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Nakagawa, K.; Imamura, M.; Yoshida, K. Risk-based portfolios with large dynamic covariance matrices. Int. J. Financ. Stud. 2018, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F.; Ledoit, O.; Wolf, M. Large dynamic covariance matrices. J. Bus. Econ. Stat. 2019, 37, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Ledoit, O.; Wolf, M. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Ann. Stat. 2012, 40, 1024–1060. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks. Rev. Financ. Stud. 2017, 30, 4349–4388. [Google Scholar] [CrossRef]
- Chen, X.; Lyu, M.R.; King, I. Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data. In Proceedings of the 34th International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 767–776. [Google Scholar]
- Wu, Y.; Lobato, J.M.H.; Ghahramani, Z. Dynamic Covariance Models for Multivariate Financial Time Series. In Proceedings of the 30th International Conference on International Conference on Machine Learning—Volume 28, Atlanta, GA, USA, 17–19 June 2013; pp. 558–566. [Google Scholar]
- Atsalakis, G.S.; Valavanis, K.P. Surveying stock market forecasting techniques—Part II: Soft computing methods. Expert Syst. Appl. 2009, 36, 5932–5941. [Google Scholar] [CrossRef]
- Cavalcante, R.C.; Brasileiro, R.C.; Souza, V.L.; Nobrega, J.P.; Oliveira, A.L. Computational intelligence and financial markets: A survey and future directions. Expert Syst. Appl. 2016, 55, 194–211. [Google Scholar] [CrossRef]
- Nakagawa, K.; Uchida, T.; Aoshima, T. Deep factor model. In Proceedings of the ECML PKDD 2018 Workshops, Dublin, Ireland, 10–14 September 2018; Springer: Berlin, Germany, 2018; pp. 37–50. [Google Scholar]
- Nakagawa, K.; Ito, T.; Abe, M.; Izumi, K. Deep recurrent factor model: Interpretable non-linear and time-varying multi-factor Model. arXiv 2019, arXiv:1901.11493. [Google Scholar]
- Shen, W.; Wang, J.; Jiang, Y.G.; Zha, H. Portfolio Choices with Orthogonal Bandit Learning. In Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; AAAI Press: Palo Alto, CA, USA, 2015; pp. 974–980. [Google Scholar]
- Song, Q.; Liu, A.; Yang, S.Y. Stock portfolio selection using learning-to-rank algorithms with news sentiment. Neurocomputing 2017, 264, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Hernández-Lobato, J.M.; Ghahramani, Z. Gaussian Process Volatility Model. In Advances in Neural Information Processing Systems 27; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 1044–1052. [Google Scholar]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Nirwan, R.S.; Bertschinger, N. Applications of Gaussian Process Latent Variable Models in Finance. In Proceedings of the SAI Intelligent Systems Conference, London, UK, 5–6 September 2019; Springer: Berlin, Germany, 2019; pp. 1209–1221. [Google Scholar]
- Mandelbrot, B.B. The variation of certain speculative prices. In Fractals and Scaling in Finance; Springer: Berlin, Germany, 1997; pp. 371–418. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin, Germany, 2003; pp. 63–71. [Google Scholar]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Der Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Schölkopf, B.; Smola, A.J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171–1220. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, N.D. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2004; pp. 329–336. [Google Scholar]
- Shah, A.; Wilson, A.; Ghahramani, Z. Student-t processes as alternatives to Gaussian processes. In Artificial Intelligence and Statistics; PMLR Press: New York, NY, USA, 2014; pp. 877–885. [Google Scholar]
- Damianou, A.C.; Titsias, M.K.; Lawrence, N.D. Variational inference for latent variables and uncertain inputs in Gaussian processes. J. Mach. Learn. Res. 2016, 17, 1425–1486. [Google Scholar]
- Ross, S.A. The arbitrage theory of capital asset pricing. In Handbook of the Fundamentals of Financial Decision Making: Part I; World Scientific: Singapore, 2013; pp. 11–30. [Google Scholar]
- Harvey, C.R.; Liu, Y.; Zhu, H. … and the cross-section of expected returns. Rev. Financ. Stud. 2016, 29, 5–68. [Google Scholar] [CrossRef] [Green Version]
- Qian, E. Risk parity and diversification. J. Invest. 2011, 20, 119–127. [Google Scholar] [CrossRef]
- Choueifaty, Y.; Coignard, Y. Toward maximum diversification. J. Portf. Manag. 2008, 35, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, Y.; Kadoya, T.; Nakagawa, K. Complex Valued Risk Diversification. Entropy 2019, 21, 119. [Google Scholar] [CrossRef] [Green Version]
US | Canada | UK | France | Germany | Spain | Italy | Netherlands | |
---|---|---|---|---|---|---|---|---|
Mean [%] | 6.00 | 5.41 | 2.39 | 4.08 | 6.87 | 3.20 | 1.35 | 2.96 |
Std. [%] | 14.93 | 14.92 | 13.62 | 18.12 | 21.13 | 20.66 | 21.71 | 19.13 |
R/R | 0.40 | 0.36 | 0.18 | 0.23 | 0.33 | 0.15 | 0.06 | 0.15 |
Skew | −0.66 | −0.92 | −0.55 | −0.38 | −0.50 | −0.17 | 0.03 | −0.74 |
Kurtosis | 5.23 | 7.36 | 4.53 | 4.52 | 6.12 | 4.96 | 4.80 | 5.88 |
Sweden | Switzerland | Japan | HongKong | Australia | Korea | Norway | Singapore | |
Mean [%] | 6.32 | 2.80 | 3.35 | 7.27 | 4.70 | 12.98 | 10.72 | 5.05 |
Std. [%] | 19.51 | 14.68 | 19.24 | 23.46 | 12.40 | 28.80 | 21.49 | 21.71 |
R/R | 0.32 | 0.19 | 0.17 | 0.31 | 0.38 | 0.45 | 0.50 | 0.23 |
Skew | −0.19 | −0.73 | −0.54 | 0.28 | −0.69 | 1.39 | −0.93 | −0.26 |
Kurtosis | 5.29 | 6.11 | 4.75 | 5.78 | 4.54 | 11.63 | 6.84 | 6.81 |
Difference | |||
---|---|---|---|
Anterior half (Jun 2008–Jun 2013) | |||
Return | −4.89% | −2.63% | 2.25% |
Risk | 19.57% | 18.33% | −1.24% |
R/R | −0.25 | −0.14 | 0.11 |
Posterior half (Jul 2013–Jun 2019) | |||
Return | 6.08% | 6.30% | 0.22% |
Risk | 11.16% | 10.56% | −0.60% |
R/R | 0.54 | 0.60 | 0.05 |
Whole period (Jun 2008–Jun 2019) | |||
Return | 0.64% | 1.87% | 1.23% |
Risk | 15.92% | 14.93% | −0.99% |
R/R | 0.04 | 0.12 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchiyama, Y.; Nakagawa, K. TPLVM: Portfolio Construction by Student’s t-Process Latent Variable Model. Mathematics 2020, 8, 449. https://doi.org/10.3390/math8030449
Uchiyama Y, Nakagawa K. TPLVM: Portfolio Construction by Student’s t-Process Latent Variable Model. Mathematics. 2020; 8(3):449. https://doi.org/10.3390/math8030449
Chicago/Turabian StyleUchiyama, Yusuke, and Kei Nakagawa. 2020. "TPLVM: Portfolio Construction by Student’s t-Process Latent Variable Model" Mathematics 8, no. 3: 449. https://doi.org/10.3390/math8030449
APA StyleUchiyama, Y., & Nakagawa, K. (2020). TPLVM: Portfolio Construction by Student’s t-Process Latent Variable Model. Mathematics, 8(3), 449. https://doi.org/10.3390/math8030449