Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Stimuli
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Target | Distracting |
---|---|
Adele | Mevin Lason |
Amy Winehouse | Bolly Boin |
Angelina Jolie | Marlina Marina |
Arnold Schwarzenegger | Maripilian |
Barack Obama | Alver Prismar |
Ben Affleck | Angelica Giama |
Benedict Cumberbatch | Brenda Nill |
Beyoncé | Daniel Primp |
Bill Clinton | Morlan Froman |
Bill Cosby | Wintera Driver |
Bill Gates | Hallera Boin |
Brad Pitt | Jenifer Lucia |
Britney Spears | Bellida |
Cameron Díaz | Raminha |
Cher | Eduard Michael |
Chuck Norris | Ally Beerack |
David Bowie | Jean Depen |
Donald Trump | Meichaela Mark |
Eddie Murphy | Isabella Prima |
Elisabeth II | Principe Loran |
Elvis Presley | Lady Francesca |
Emilia Clarke | Leonidas Lebron |
Emma Watson | Jenny Fistar |
Freddie Mercury | Steven Halling |
George Clooney | Lidia Lia |
Gwyneth Paltrow | Kam Jing |
Harrison Ford | Lea Darsian |
Hillary Clinton | Henrry Ferd |
J. K. Rowling | Siguona Near |
Jack Nicholson | Sergev Pein |
Jennifer Aniston | Jessica Anilla |
Jennifer Lawrence | Albert Liebowitz |
Jessica Alba | Rifka Hartman |
Jodie Foster | Nick Hanningan |
Johnny Depp | Elisa Clock |
Jon Bon Jovi | Nina Hirschfeld |
Julia Roberts | Jhonny Clun |
Keanu Reeves | Adilian |
Kevin Bacon | Joseph Cucumberg |
Kevin Spacey | Nial Nian |
Kim Jong-un | Nila Kadman |
Kim Kardashian | Mike Jhonny |
Kit Harington | Jeana Ryan |
Kristen Stewart | Sean Lopian |
Lady Diana | Kina Lina |
Lady Gaga | Brain William |
Leonardo DiCaprio | Pepil Francis |
Lionel Messi | Miralin Cana |
Lucy Liu | Giulian Lawn |
Madonna | Nillan Loan |
Mariah Carey | Titian |
Marilyn Monroe | Admed Li |
Mark Zuckerberg | Irma Weals |
Meghan Markle | Bill Ruan |
Meryl Streep | Suorak |
Michael Jackson | Ben Callis |
Michael Schumacher | Loda Lea |
Miley Cyrus | Whisper Cerf |
Morgan Freeman | Sach Kodesh |
Muhammad Ali | Ben Beck |
Naomi Campbell | Cayetana Troop |
Nelson Mandela | Seon Loop |
Nicole Kidman | Silvia Harrack |
Pope Francis | Marcus Getz |
Penelope Cruz | H.P. Malian |
Prince Harry | Lean Goop |
Rihanna | Whila Waps |
Robin Williams | Frodian Moop |
Ronaldo | Silina Win |
Ryan Gosling | Daniel Brown |
Salma Hayek | Mary Strap |
Scarlett Johansson | Joseph Beats |
Serena Williams | Nima Champs |
Shakira | Lopold Mossa |
Sigourney Weaver | Renial |
Stephen Hawking | Britania Plims |
Steve Jobs | Kevin Reen |
Vladimir Putin | Mary Pealds |
Whoopi Goldberg | Rubert Wills |
Winona Ryder | Jhon Nillan |
References
- Rizzo, S.; Venneri, A.; Papagno, C. Famous face recognition and naming test: A normative study. Neurol. Sci. 2002, 23, 153–159. [Google Scholar] [CrossRef]
- Davies-Thompson, J.; Johnston, S.; Tashakkor, Y.; Pancaroglu, R.; Barton, J.J.S. The relationship between visual word and face processing lateralization in the fusiform gyri: A cross-sectional study. Brain Res. 2016, 1644, 88–97. [Google Scholar] [CrossRef]
- Kanwisher, N.; McDermott, J.; Chun, M.M. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. J. Neurosci. 1997, 17, 4302–4311. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 2011, 15, 254–262. [Google Scholar] [CrossRef]
- Rossion, B.; Hanseeuw, B.; Dricot, L. Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis. Brain Cogn. 2012, 79, 138–157. [Google Scholar] [CrossRef] [PubMed]
- Centanni, T.M.; Norton, E.S.; Park, A.; Beach, S.D.; Halverson, K.; Ozernov-Palchik, O.; Gaab, N.; Gabrieli, J.D. Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Dev. Sci. 2018, 21, e12658. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Developmental Laterality Research: Childhood. In Causality and Development; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–72. ISBN 978-3-030-02492-5. [Google Scholar]
- Dehaene, S.; Cohen, L. Cultural Recycling of Cortical Maps. Neuron 2007, 56, 384–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, L.; Dehaene, S.; Naccache, L.; Lehéricy, S.; Dehaene-Lambertz, G.; Hénaff, M.-A.; Michel, F. The visual word form area. Brain 2000, 123, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Durisko, C.; Moore, M.W.; Coutanche, M.N.; Chen, D.; Fiez, J.A. The VWFA Is the Home of Orthographic Learning When Houses Are Used as Letters. Eneuro 2019, 6, ENEURO.0425-17.2019. [Google Scholar] [CrossRef] [Green Version]
- Nordt, M.; Gomez, J.; Natu, V.; Jeska, B.; Barnett, M.; Grill-Spector, K. Learning to Read Increases the Informativeness of Distributed Ventral Temporal Responses. Cereb. Cortex 2019, 29, 3124–3139. [Google Scholar] [CrossRef] [Green Version]
- Yargholi, E.; Hossein-Zadeh, G.-A.; Rajimehr, R. Predicting Blood Oxygenation Level-Dependent Activity in Fusiform Face Area from the Activity in Other Visual Areas. Brain Connect. 2019, 9, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, A.; Gorno-Tempini, M.L.; Price, C.J. Neuroimaging Studies of Word and Pseudoword Reading: Consistencies, Inconsistencies, and Limitations. J. Cogn. Neurosci. 2003, 15, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Hendel, R.K.; Starrfelt, R.; Gerlach, C. The good, the bad, and the average: Characterizing the relationship between face and object processing across the face recognition spectrum. Neuropsychologia 2019, 124, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Plaut, D.C.; Behrmann, M. Response to Susilo and Duchaine: Beyond neuropsychological dissociations in understanding face and word representations. Trends Cogn. Sci. 2013, 17, 546. [Google Scholar] [CrossRef] [PubMed]
- Robotham, R.J.; Starrfelt, R. Face and Word Recognition Can Be Selectively Affected by Brain Injury or Developmental Disorders. Front. Psychol. 2017, 8, 1547. [Google Scholar] [CrossRef] [PubMed]
- Gabay, Y.; Dundas, E.; Plaut, D.; Behrmann, M. Atypical perceptual processing of faces in developmental dyslexia. Brain Lang. 2017, 173, 41–51. [Google Scholar] [CrossRef]
- Balas, B.; Saville, A. Hometown size affects the processing of naturalistic face variability. Vis. Res. 2017, 141, 228–236. [Google Scholar] [CrossRef]
- Bernabé-Valero, G.; Blasco-Magraner, J.S.; Moret-Tatay, C. Testing Motivational Theories in Music Education: The Role of Effort and Gratitude. Front. Behav. Neurosci. 2019, 13, 172. [Google Scholar] [CrossRef] [Green Version]
- Moret-Tatay, C.; Beneyto-Arrojo, M.J.; Laborde-Bois, S.C.; Martínez-Rubio, D.; Senent-Capuz, N. Gender, Coping, and Mental Health: A Bayesian Network Model Analysis. Soc. Behav. Pers. Int. J. 2016, 44, 827–835. [Google Scholar] [CrossRef]
- Puga, J.L.; Krzywinski, M.; Altman, N. Bayesian networks. Nat. Methods 2015, 12, 799–800. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruano, A.-M.; López-Puga, J.; Delgado-Morán, J.-J. El componente social de la amenaza híbrida y su detección con modelos bayesianos/The Social Component of the Hybrid Threat and its Detection with Bayesian Models. Urvio Rev. Lat. Estud. Segur. 2019, 57–69. [Google Scholar] [CrossRef]
- Forster, K.I.; Forster, J.C. DMDX: A Windows display program with millisecond accuracy. Behav. Res. Methods Instrum. Comput. 2003, 35, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-López, C.; Perea, M.; Moret-Tatay, C.; Carreiras, M. Can masked priming effects be obtained with words? Atten. Percept. Psychophys. 2011, 73, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Qiao, E.; Vinckier, F.; Szwed, M.; Naccache, L.; Valabrègue, R.; Dehaene, S.; Cohen, L. Unconsciously deciphering handwriting: Subliminal invariance for handwritten words in the visual word form area. NeuroImage 2010, 49, 1786–1799. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zylstra, R.R. Normality tests for small sample sizes. Qual. Eng. 1994, 7, 45–58. [Google Scholar] [CrossRef]
- Lusher, D.; Robins, G.; Kremer, P. The Application of Social Network Analysis to Team Sports. Meas. Phys. Educ. Exerc. Sci. 2010, 14, 211–224. [Google Scholar] [CrossRef]
- Luo, Y.; El Naqa, I.; McShan, D.L.; Ray, D.; Lohse, I.; Matuszak, M.M.; Owen, D.; Jolly, S.; Lawrence, T.S.; Kong, F.-M., (Spring); et al. Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis. Radiother. Oncol. 2017, 123, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Mooney, C.F.; Mooney, C.L.; Mooney, C.Z.; Duval, R.D.; Duvall, R.; Mooney, C.F.; Mooney, C.L.; Mooney, C.Z.; Duval, R.D.; Duvall, R. Bootstrapping: A nonparametric Approach to Statistical Inference (No. 95); SAGE Publications: Thousand Oaks, CA, USA, 1993. [Google Scholar]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Barragan-Jason, G. How fast is famous face recognition? Front. Psychol. 2012, 3, 454. [Google Scholar] [CrossRef] [Green Version]
- Behrmann, M.; Plaut, D.C. Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 2013, 17, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, R.; Van der Haegen, L.; Brysbaert, M.; Vingerhoets, G. Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex 2019, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
- McCandliss, B.D.; Cohen, L.; Dehaene, S. The visual word form area: Expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 2003, 7, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Inamizu, S.; Yamada, E.; Ogata, K.; Uehara, T.; Kira, J.; Tobimatsu, S. Neuromagnetic correlates of hemispheric specialization for face and word recognition. Neurosci. Res. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Kanwisher, N.; Yovel, G. The fusiform face area: A cortical region specialized for the perception of faces. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2109–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.J.; Lambon Ralph, M.A.; Kim, E.; Tainturier, M.-J.; Beeson, P.M.; Rapcsak, S.Z.; Woollams, A.M. Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions. Cortex 2015, 72, 79–96. [Google Scholar] [CrossRef]
- Sunday, M.A.; Patel, P.A.; Dodd, M.D.; Gauthier, I. Gender and hometown population density interact to predict face recognition ability. Vis. Res. 2019, 163, 14–23. [Google Scholar] [CrossRef]
- Sunday, M.A.; Dodd, M.D.; Tomarken, A.J.; Gauthier, I. How faces (and cars) may become special. Vis. Res. 2019, 157, 202–212. [Google Scholar] [CrossRef]
- De Gardelle, V.; Charles, L.; Kouider, S. Perceptual awareness and categorical representation of faces: Evidence from masked priming. Conscious. Cogn. 2011, 20, 1272–1281. [Google Scholar] [CrossRef]
- Comesaña, M.; Soares, A.P.; Perea, M.; Piñeiro, A.P.; Fraga, I.; Pinheiro, A. ERP correlates of masked affective priming with emoticons. Comput. Hum. Behav. 2013, 29, 588–595. [Google Scholar] [CrossRef]
- Bell, V.; O’Driscoll, C. The network structure of paranoia in the general population. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 737–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Li, Q.; Yang, J.; Cong, G.; Li, G. Modeling of the Public Opinion Polarization Process with the Considerations of Individual Heterogeneity and Dynamic Conformity. Mathematics 2019, 7, 917. [Google Scholar] [CrossRef] [Green Version]
- Druică, E.; Vâlsan, C.; Ianole-Călin, R.; Mihail-Papuc, R.; Munteanu, I. Exploring the Link between Academic Dishonesty and Economic Delinquency: A Partial Least Squares Path Modeling Approach. Mathematics 2019, 7, 1241. [Google Scholar] [CrossRef] [Green Version]
- Solares-Hernández, P.A.; Manzano, F.A.; Pérez-Benito, F.J.; Conejero, J.A. Divisibility Patterns within Pascal Divisibility Networks. Mathematics 2020, 8, 254. [Google Scholar] [CrossRef] [Green Version]
Condition | Stimulus Group | Mean (ms) | SD | Mean (ms) | SD | Accuracy | |
---|---|---|---|---|---|---|---|
Celebrity face | Female face | Men | 852.12 | 81.86 | 816.65 | 111.32 | 72% |
Women | 781.19 | 129.02 | |||||
Male face | Men | 945.03 | 86.58 | 888.75 | 129.25 | 87% | |
Women | 832.48 | 144.01 | |||||
Celebrity name | Female name | Men | 821.62 | 104.24 | 799.81 | 94.31 | 89% |
Women | 778.01 | 82.80 | |||||
Male name | Men | 849.58 | 140.98 | 831.16 | 123.55 | 82% | |
Women | 812.75 | 107.68 | |||||
Non-Celebrity face | Female face | Men | 836.03 | 120.53 | 815.53 | 105.66 | 96% |
Women | 795.03 | 90.04 | |||||
Male face | Men | 824.81 | 125.30 | 807.36 | 100.87 | 97% | |
Women | 789.92 | 71.44 | |||||
Non-Celebrity name | Female name | Men | 932.14 | 96.28 | 917.60 | 105.51 | 96% |
Women | 903.05 | 117.32 | |||||
Male name | Men | 895.69 | 78.80 | 902.64 | 93.22 | 97% | |
Women | 909.59 | 109.68 |
Condition | Mean | SD | Accuracy | |
---|---|---|---|---|
Face Target | Identity Masked Priming Face–Face | 660.06 | 90.12 | 79% |
Related Masked Priming Word–Face | 677.31 | 94.08 | 83% | |
Unrelated Masked Priming Face–Face | 701.33 | 80.10 | 82% | |
Unrelated Masked Priming Word–Face | 706.38 | 96.78 | 77% | |
Name Word Target | Identity Masked Priming Word–Word | 703.31 | 100.29 | 78% |
Related Masked Priming Face–Word | 708.51 | 100.52 | 85% | |
Unrelated Masked Priming Word–Word | 765.95 | 103.22 | 81% | |
Unrelated Masked Priming Face–Word | 745.18 | 105.14 | 83% | |
Face Distracting | Identity Masked Priming Face–Face | 712.32 | 106.39 | 78% |
Related Masked Priming Word–Face | 737.76 | 110.65 | 79% | |
Unrelated Masked Priming Face–Face | 714.90 | 108.22 | 78% | |
Unrelated Masked Priming Word–Face | 746.83 | 110.74 | 79% | |
Name Word Distracting | Identity Masked Priming Word–Word | 814.79 | 129.39 | 87% |
Related Masked Priming Face–Word | 844.89 | 119.61 | 86% | |
Unrelated Masked Priming Word–Word | 851.22 | 126.70 | 87% | |
Unrelated Masked Priming Face–Word | 804.77 | 129.62 | 88% |
Condition | Country | Mean | SD | Mean | SD | |
---|---|---|---|---|---|---|
Target | Identity masked priming for faces | Brazil | 43.17 | 52.15 | 48.29 | |
Spain | 38.11 | 50.64 | 41.27 | |||
USA | 42.53 | 44.09 | ||||
Identity masked priming for names | Brazil | 61.27 | 52.83 | 51.27 | ||
Spain | 64.48 | 49.77 | 62.64 | |||
USA | 62.18 | 53.76 | ||||
Related masked priming for word over faces | Brazil | 10.95 | 65.31 | 62.35 | ||
Spain | 22.24 | 53.73 | 29.07 | |||
USA | 54.03 | 62.22 | ||||
Related masked priming for faces over words | Brazil | 55.58 | 40.64 | 53.48 | ||
Spain | 24.32 | 71.05 | 36.67 | |||
USA | 30.11 | 39.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moret-Tatay, C.; Baixauli-Fortea, I.; Grau Sevilla, M.D.; Irigaray, T.Q. Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics 2020, 8, 699. https://doi.org/10.3390/math8050699
Moret-Tatay C, Baixauli-Fortea I, Grau Sevilla MD, Irigaray TQ. Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics. 2020; 8(5):699. https://doi.org/10.3390/math8050699
Chicago/Turabian StyleMoret-Tatay, Carmen, Inmaculada Baixauli-Fortea, M. Dolores Grau Sevilla, and Tatiana Quarti Irigaray. 2020. "Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition" Mathematics 8, no. 5: 699. https://doi.org/10.3390/math8050699
APA StyleMoret-Tatay, C., Baixauli-Fortea, I., Grau Sevilla, M. D., & Irigaray, T. Q. (2020). Can You Identify These Celebrities? A Network Analysis on Differences between Word and Face Recognition. Mathematics, 8(5), 699. https://doi.org/10.3390/math8050699