Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces
Abstract
:1. Introduction and Main Results
2. Preliminary Estimates and Function Spaces
2.1. Function Spaces
2.2. Linear Estimates
2.3. Trilinear Estimates
3. Proof of Theorem 1
3.1. Existence of Solution
3.2. The Uniqueness
3.3. Continuous Dependence of the Initial Data
4. Regularity of the Solution to Coupled System (3)
4.1. Gevrey- Regularity in Time
4.2. Failure of Gevrey-D Regularity in Time
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on and . J. Am. Math. Soc. 2003, 16, 705–749. [Google Scholar] [CrossRef] [Green Version]
- Kappeler, T.; Topalov, P. Global well-posedness of mKDV in L2(). Commun. Partial Differ. Equ. 2005, 30, 435–449. [Google Scholar] [CrossRef]
- Birnir, B.; Kenig, C.; Ponce, G.; Svanstedt, N.; Vega, L. On the well-posedness of the Initial Value Problem for the generalized Korteweg-de Vries and nonlinear Schrodinger equations. Lond. Math. Soc. 2 1996, 53, 551–559. [Google Scholar] [CrossRef]
- Boukarou, A.; Zennir, K.; Guerbati, K.; Georgiev, S.G. Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity. Rend. Circ. Mat. Palermo 2 2020. [Google Scholar] [CrossRef]
- Boukarou, A.; Zennir, K.; Guerbati, K.; Georgiev, S.G. Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 2020. [Google Scholar] [CrossRef]
- Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 1993, 3, 209–262. [Google Scholar] [CrossRef]
- Pelinovsky, E.N.; Shurgalina, E.G. Two-Solitons Interaction Within the Framework of the Modified Korteweg-de Vries Equation. Radiophys. Quantum Electron. 2015, 57, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Slyunyaev, A.V. Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. J. Exp. Theor. Phys. 2001, 92, 529–534. [Google Scholar] [CrossRef]
- Carvajal, X.; Panthee, M. Sharp well-posedness for a coupled system of mKDV-type equations. J. Evol. Equ. 2019, 19, 1167–1197. [Google Scholar] [CrossRef] [Green Version]
- Kenig, C.E.; Ponce, G.; Vega, L. A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 1996, 9, 573–603. [Google Scholar] [CrossRef]
- Majda, A.; Biello, J. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 2003, 60, 1809–1821. [Google Scholar] [CrossRef]
- Ablowitz, M.; Kaup, D.; Newell, A.; Segur, H. Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 1973, 31, 125–127. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar] [CrossRef]
- Oh, T. Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory. Int. Math. Res. Not. IMRN 2009, 18, 3516–3556. [Google Scholar] [CrossRef] [Green Version]
- Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Grujic, Z.; Kalisch, H. Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ. Integr. Equ. 2002, 15, 1325–1334. [Google Scholar]
- Barostichi, R.F.; Figueira, R.O.; Himonas, A.A. Well-posedness of the “good” Boussinesq equation in analytic Gevrey spaces and time regularity. J. Differ. Equ. 2019, 267, 3181–3198. [Google Scholar] [CrossRef]
- Hannah, H.; Himonas, A.; Petronilho, G. Gevrey regularity of the periodic gKdV equation. J. Differ. Equ. 2011, 250, 2581–2600. [Google Scholar] [CrossRef]
- Hannah, H.; Himonas, A.A.; Petronilho, G. Gevrey regularity in time for generalized KdV type equations. Contemp. Math. AMS 2006, 400, 117–127. [Google Scholar]
- Himonas, A.; Petronilho, G. Analytic well-posedness of periodic gKdV. J. Differ. Equ. 2012, 253, 3101–3112. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J. Well-posedness and regularity of the generalized Burgers equation in periodic Gevrey spaces. J. Math. Anal. Appl. 2017, 454, 18–40. [Google Scholar] [CrossRef]
- Gorsky, J.; Himonas, A. Construction of non-analytic solutions for the generalized KdV equation. J. Math. Anal. Appl. 2005, 303, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Gorsky, J.; Himonas, A.; Holliman, C.; Petronilho, G. The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces. J. Math. Anal. Appl. 2013, 405, 349–361. [Google Scholar] [CrossRef]
- Bekiranov, D.; Ogawa, T.; Ponce, G. Interaction equations for short and long dispersive waves. J. Funct. Anal. 1998, 158, 357–388. [Google Scholar] [CrossRef] [Green Version]
- Alinhac, S.; Metivier, G. Propagation de l’analyticité des solutions des systemes hyperboliques non-linéaires. Invent. Math. 1984, 75, 189–204. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukarou, A.; Guerbati, K.; Zennir, K.; Alodhaibi, S.; Alkhalaf, S. Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics 2020, 8, 809. https://doi.org/10.3390/math8050809
Boukarou A, Guerbati K, Zennir K, Alodhaibi S, Alkhalaf S. Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics. 2020; 8(5):809. https://doi.org/10.3390/math8050809
Chicago/Turabian StyleBoukarou, Aissa, Kaddour Guerbati, Khaled Zennir, Sultan Alodhaibi, and Salem Alkhalaf. 2020. "Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces" Mathematics 8, no. 5: 809. https://doi.org/10.3390/math8050809
APA StyleBoukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., & Alkhalaf, S. (2020). Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics, 8(5), 809. https://doi.org/10.3390/math8050809