Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Existence and Uniqueness Solution
- There exist constants such thatfor each and .
- There exist constants such thatfor each and .
3.2. Existence of at Least One Solution
4. Ulam Stability Analysis Results
- for , and ;
- for ;
- ;
- .
- for , and ;
- for ;
- ;
- .
- ,
5. An Example
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Liu, X.; Belić, M.R.; Zhong, W.; Zhang, Y.; Xiao, M. Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation. Phys. Rev. Lett. 2015, 115, 180403. [Google Scholar] [CrossRef] [PubMed]
- Zingales, M.; Failla, G. The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors. Commun. Nonlinear Sci. Numer. Simul. 2015, 29, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Lazopoulos, K.A.; Lazopoulos, A.K. On fractional bending of beams. Arch. Appl. Mech. 2016, 86, 1133–1145. [Google Scholar] [CrossRef]
- Sumelka, W.; Voyiadjis, G.Z. A hyperelastic fractional damage material model with memory. Int. J. Solids Struct. 2017, 124, 151–160. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Sumelka, W. Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative. J. Mech. Behav. Biomed. 2019, 89, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Ciarletta, M.; Fabrizio, M.; Tibullo, V. Melting and solidification of pure metals by a phase-field model. Rend Lincei-Mat. Appl. 2017, 28, 463–478. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F. Fractional Meissner–Ochsenfeld effect in superconductors. Phys. Lett. B 2019, 33, 1950316. [Google Scholar] [CrossRef]
- Rahimi, Z.; Rezazadeh, G.; Sumelka, W.; Yang, X.-J. A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory. Arch. Mech. 2017, 69, 413–433. [Google Scholar]
- Goodrich, C.S.; Peterson, A.C. Discrete Fractional Calculus; Springer: New York, NY, USA, 2015. [Google Scholar]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 2013, 36. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, 2013, 406910. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 2011, 17, 445–456. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Leanu, D.; Rezapour, S.; Salehi, S. The existence of solutions for some fractional finite difference equations via sum boundary conditions. Adv. Differ. Equ. 2014, 2014, 282. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.S. On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 2012, 385, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.S. On a discrete fractional three-point boundary value problem. J. Differ. Equ. Appl. 2012, 18, 397–415. [Google Scholar] [CrossRef]
- Erbe, L.; Goodrich, C.S.; Jia, B.; Peterson, A. Survey of the qualitative properties of fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions. Adv. Differ. Equ. 2016, 2016, 43. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tang, X. Three difference between a class of discrete fractional and integer order boundary value problems. Commun. Nonlinear Sci. 2014, 19, 4057–4067. [Google Scholar] [CrossRef]
- Lv, W.; Feng, J. Nonlinear discrete fractional mixed type sum-difference equation boundary value problems in Banach spaces. Adv. Differ. Equ. 2014, 2014, 184. [Google Scholar] [CrossRef] [Green Version]
- Lv, W. Existence of solutions for discrete fractional boundary value problems witha p-Laplacian operator. Adv. Differ. Equ. 2012, 2012, 163. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Erbe, L.; Peterson, A. Two monotonicity results for nabla and delta fractional differences. Arch. Math. 2015, 104, 589–597. [Google Scholar] [CrossRef]
- Jia, B.; Erbe, L.; Peterson, A. Convexity for nabla and delta fractional differences. J. Differ. Equ. Appl. 2015, 21, 360–373. [Google Scholar]
- Ferreira, R.A.C. Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. J. Differ. Equ. Appl. 2013, 19, 712–718. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Goodrich, C.S. Positive solution for a discrete fractional periodic boundary value problem. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2012, 19, 545–557. [Google Scholar]
- Kang, S.G.; Li, Y.; Chen, H.Q. Positive solutions to boundary value problems of fractional difference equations with nonlocal conditions. Adv. Differ. Equ. 2014, 2014, 7. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Xu, J.; Regan, D.O. Solutions for a fractional difference boundary value problem. Adv. Differ. Equ. 2013, 2013, 319. [Google Scholar] [CrossRef] [Green Version]
- Holm, M. Sum and difference compositions in discrete fractional calculus. Cubo 2011, 13, 153–184. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T.; Tariboon, J.; Ntouyas, S.K. Existence results for fractional difference equations with three-point fractional sum boundary conditions. Discrete Dyn. Nat. Soc. 2013, 2013, 104276. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T.; Tariboon, J.; Ntouyas, S.K. Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions. Adv. Differ. Equ. 2013, 2013, 296. [Google Scholar] [CrossRef] [Green Version]
- Sitthiwirattham, T. Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions. Math. Method. Appl. Sci. 2015, 38, 2809–2815. [Google Scholar] [CrossRef]
- Sitthiwirattham, T. Boundary value problem for p-Laplacian Caputo fractional difference equations with fractional sum boundary conditions. Math. Method. Appl. Sci. 2016, 39, 1522–1534. [Google Scholar] [CrossRef]
- Chasreechai, S.; Kiataramkul, C.; Sitthiwirattham, T. On nonlinear fractional sum-difference equations via fractional sum boundary conditions involving different orders. Math. Probl. Eng. 2015, 2015, 519072. [Google Scholar] [CrossRef] [Green Version]
- Reunsumrit, J.; Sitthiwirattham, T. Positive solutions of three-point fractional sum boundary value problem for Caputo fractional difference equations via an argument with a shift. Positivity 2016, 20, 861–876. [Google Scholar] [CrossRef]
- Reunsumrit, J.; Sitthiwirattham, T. On positive solutions to fractional sum boundary value problems for nonlinear fractional difference equations. Math. Method. Appl. Sci. 2016, 39, 2737–2751. [Google Scholar] [CrossRef]
- Kaewwisetkul, B.; Sitthiwirattham, T. On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay. Adv. Differ. Equ. 2017, 2017, 219. [Google Scholar] [CrossRef] [Green Version]
- Reunsumrit, R.; Sitthiwirattham, T. A New class of four-point fractional sum boundary value problems for nonlinear sequential fractional difference equations involving shift operators. Kragujevac J. Math. 2018, 42, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Chasreechai, S.; Sitthiwirattham, T. Existence results of initial value problems for hybrid fractional sum-difference equations. Discrete Dyn. Nat. Soc. 2018, 2018, 5268528. [Google Scholar] [CrossRef] [Green Version]
- Chasreechai, S.; Sitthiwirattham, T. On separate fractional sum-difference boundary value problems with n-point fractional sum-difference boundary conditions via arbitrary different fractional orders. Mathematics. 2019, 2019, 471. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Chaos synchronization of the discrete fractional logistic map. Signal Process. 2014, 102, 96–99. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Xie, H.P.; Chen, F.L. Chaos synchronization of fractional chaotic maps based on stability results. Phys. A 2016, 460, 374–383. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Ulam-Hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D. Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simulat. 2018, 57, 299–308. [Google Scholar] [CrossRef]
- Baleanu, D.; Wu, G.C.; Bai, Y.R.; Chen, F.L. Stability analysis of Caputo–like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simulat. 2017, 48, 520–530. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y. Existence and Ulam Stability of Solutions for Discrete Fractional Boundary Value Problem. Discrete Dyn. Nat. Soc. 2013, 2013, 459161. [Google Scholar] [CrossRef]
- Cermák, J.; Gőrigyori, I.; Nechvátal, L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015, 18, 651–672. [Google Scholar] [CrossRef]
- Lizama, C. The Poisson distribution, abstract fractional difference equations, and stability. Proc. Am. Math. Soc. 2017, 145, 3809–3827. [Google Scholar] [CrossRef]
- Cermák, J.; Kisela, T.; Nechvátal, L. Stability and asymptotic properties of a linear fractional difference equation. Adv. Differ. Equ. 2012, 2012, 122. [Google Scholar] [CrossRef] [Green Version]
- Dassios, I.K. Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations. Circuits Syst. Signal Process 2017, 36, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Baleanu, D. Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 2018, 21, 354–375. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Huang, L.L. Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouncharoen, R.; Chasreechai, S.; Sitthiwirattham, T. Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition. Mathematics 2020, 8, 843. https://doi.org/10.3390/math8050843
Ouncharoen R, Chasreechai S, Sitthiwirattham T. Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition. Mathematics. 2020; 8(5):843. https://doi.org/10.3390/math8050843
Chicago/Turabian StyleOuncharoen, Rujira, Saowaluck Chasreechai, and Thanin Sitthiwirattham. 2020. "Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition" Mathematics 8, no. 5: 843. https://doi.org/10.3390/math8050843
APA StyleOuncharoen, R., Chasreechai, S., & Sitthiwirattham, T. (2020). Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition. Mathematics, 8(5), 843. https://doi.org/10.3390/math8050843