Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces
Abstract
:1. Introduction
2. Mathematical Background
- (a)
- (boundary condition),
- (b)
- (commutativity),
- (c)
- (associativity),
- (d)
- and(monotonicity).
- (a)
- (boundary condition),
- (b)
- (commutativity),
- (c)
- (associativity),
- (d)
- and (monotonicity).
- (i)
- (ii)
- if and only if ;
- (iii)
- for all ;
- (iv)
- (i)
- if and only if ;
- (ii)
- for all ;
- (iii)
- for all Then is called a generalized metric space.
- (1)
- the sequence converges to a fixed point of J;
- (2)
- is the unique fixed point of J in the set
- (3)
- for all
3. The Hyers-Ulam-Rassias Stability Result
4. Conclusions
5. Data Availability
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Science Editions; Wiley: New York, NY, USA, 1964; Chapter VI. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Jung, S.M. Hyers-Ulam stability of linear differential equations of first order, II. App. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Grabiec, A. The generalized Hyers-Ulam stability of a class of functional equations. Publ. Math. Debrecen 1996, 48, 217–235. [Google Scholar]
- Dong, Y. On approximate isometries and application to stability of a function. J. Math. Anal. Appl. 2015, 426, 125–137. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in Banach spaces. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Cholewa, P.W. Remarks on the stability of functional equations. Aequ. Math. 1984, 27, 76–86. [Google Scholar] [CrossRef]
- Czerwik, S. On the stability of the quadratic mappings in normed spaces. Abh. Math. Sem. Univ. Hamburg 1992, 62, 59–64. [Google Scholar] [CrossRef]
- Gavruta, P. A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Isac, G.; Rassias, T.H. Stability of ψ -additive mapping: Applications to nonlinear analysis. Int. J. Math. Math. Sci. 1996, 19, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Mihet, D. The fixed point method for fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 2009, 160, 1663–1667. [Google Scholar] [CrossRef]
- Samanta, T.K.; Kayal, N.C.; Mondal, P. The stability of a general quadratic functional equation in fuzzy Banach spaces. J. Hyperstruct. 2012, 1, 71–87. [Google Scholar]
- Samanta, T.K.; Mondal, P.; Kayal, N.C. The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces. Ann. Fuzzy Math. Inform. 2013, 6, 59–68. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Shakeri, S. Intutionistic fuzzy stability of Jenson type mapping. J. Nonlinear Sci. Appl. 2009, 2, 105–112. [Google Scholar] [CrossRef]
- Mirmostafee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Kayal, N.C.; Samanta, T.K.; Saha, P.; Choudhury, B.S. A Hyers-Ulam-Rassias stability result for functional equations in intuitionistic fuzzy Banach spaces. Iran. J. Fuzzy Syst. 2016, 13, 87–96. [Google Scholar]
- Mondal, P.; Kayal, N.C.; Samanta, T.K. Stability of a quadratic functional equation in intuitionistic fuzzy banach spaces. J. New Results. Sci. 2016, 10, 52–59. [Google Scholar]
- Wang, Z.; Rassias, T.M.; Saadati, R. Intuitionistic fuzzy stability of Jensen-type quadratic functional equations. Filomat 2014, 28, 663–676. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Sevli, H. Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space. J. Comp. Appl. Math. 2011, 235, 2137–2146. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Kayal, N.C.; Samanta, T.K. The stability of Pexider type functional equation in intuitionistic fuzzy banach spaces via fixed point technique. J. Hyperstruct. 2015, 4, 37–49. [Google Scholar]
- Xu, T.Z.; Rassias, M.J.; Xu, W.X.; Rassias, J.M. A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations. Iran. J. Fuzzy Syst. 2012, 9, 21–40. [Google Scholar]
- Diaz, J.B.; Margolisi, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M. On the Hyers-Ulam stability of functional equations that have the quadratic property. J. Math. Anal. Appl. 1998, 222, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M. Quadratic functional equations of Pexider type. J. Math. Math. Sci. 2000, 24, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Int. J. Bioautomat. 2016, 20, S27–S42. [Google Scholar]
- Deschrijiver, G.; Kerre, E.E. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 2003, 23, 227–235. [Google Scholar] [CrossRef]
- Deschrijver, G.; Cornelis, C.; Kerre, E.E. On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Sust. 2004, 12, 45–61. [Google Scholar] [CrossRef]
- Saadati, R.; Park, J.H. On Intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Cadariu, L.; Radu, V. Fixed points and stability for functional equations in probabilistic metric and random normed spaces. Fixed Point Theory Appl. 2009, 2009, 589143. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, P.; Samanta, T.K.; Mondal, P.; Choudhury, B.S.; De La Sen, M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics 2020, 8, 974. https://doi.org/10.3390/math8060974
Saha P, Samanta TK, Mondal P, Choudhury BS, De La Sen M. Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics. 2020; 8(6):974. https://doi.org/10.3390/math8060974
Chicago/Turabian StyleSaha, P., T. K. Samanta, Pratap Mondal, B. S. Choudhury, and Manuel De La Sen. 2020. "Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces" Mathematics 8, no. 6: 974. https://doi.org/10.3390/math8060974
APA StyleSaha, P., Samanta, T. K., Mondal, P., Choudhury, B. S., & De La Sen, M. (2020). Applying Fixed Point Techniques to Stability Problems in Intuitionistic Fuzzy Banach Spaces. Mathematics, 8(6), 974. https://doi.org/10.3390/math8060974