On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
Abstract
:1. Introduction
1.1. Background
1.2. Steady State and Main Results
2. Variational Method for the Case
3. The Exponential Growth Rate
4. Nonlinear Energy Estimates for the Case
5. Proof of Theorem 1
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kulikovskiy, A.G.; Lyubimov, G.A. Magnetohydrodynamics; Addison-Wesley: Reading, MA, USA, 1965. [Google Scholar]
- Laudau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media, 2nd ed.; Pergamon: New York, NY, USA, 1984. [Google Scholar]
- Pratt, J.; Busse, A.; Müller, W.C. Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence. Astronom. Astrophys. 2013, 557, A76. [Google Scholar] [CrossRef]
- Duvaut, G.; Lions, J.L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 1972, 46, 241–279. [Google Scholar] [CrossRef]
- Sermange, M.; Temam, R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 1983, 36, 635–664. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Wu, J. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 2011, 226, 1803–1822. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Xu, L.; Zhang, P. Global small solutions of 2-D incompressible MHD system. J. Differ. Equ. 2015, 259, 5440–5485. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, P. Global small solutions to an MHD-type system: the three-dimensional case. Comm. Pure Appl. Math. 2014, 67, 531–580. [Google Scholar] [CrossRef]
- Ren, X.; Wu, J.; Xiang, Z.; Zhang, Z. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 2014, 267, 503–541. [Google Scholar] [CrossRef]
- Cannon, J.R.; Dibenedetto, E. The Initial Value Problem for the Boussinesq with Data in Lp, Approximation Methods for Navier-Stokes Problems, Lecture Notes in Mathematics Volume; Springer: Berlin/Heidelberg, Germany, 1980; Volume 771, pp. 129–144. [Google Scholar]
- Wang, C.; Zhang, Z. Global well-posedness for 2-D Boussinesq system with the temperature-density viscosity and thermal diffusivity. Adv. Math. 2011, 228, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Chae, D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 2006, 203, 497–513. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.Y.; Li, C. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 2005, 12, 1–12. [Google Scholar] [CrossRef]
- Abidi, H.; Hmidi, T. On the global well-posedness for Boussinesq system. J. Differ. Equ. 2007, 233, 199–220. [Google Scholar] [CrossRef]
- Hmidi, T.; Keraani, S. On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J. 2009, 58, 1591–1618. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.J.; Pan, R.; Zhao, K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch. Ration. Mech. Anal. 2011, 199, 739–760. [Google Scholar] [CrossRef]
- Li, D.; Xu, X. Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity. Dyn. PDE 2013, 10, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Danchin, R.; Paicu, M. Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France 2008, 136, 261–309. [Google Scholar] [CrossRef] [Green Version]
- Hmidi, T.; Rousset, F. Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data. Annales de l’IHP Analyse non Linéaire 2010, 27, 1227–1246. [Google Scholar] [CrossRef] [Green Version]
- Hmidi, T.; Rousset, F. Global well-posedness for the Euler-Boussinesq system with axisymmetric data. J. Funct. Anal. 2011, 260, 745–796. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Liu, C.; Qian, C. On partial regularity problem for 3D Boussinesq equations. J. Differ. Equ. 2017, 263, 4156–4221. [Google Scholar] [CrossRef]
- Lei, Z. On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differ. Equ. 2015, 259, 3202–3215. [Google Scholar] [CrossRef]
- Cao, C.; Wu, J. Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 2010, 248, 2263–2274. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Xin, Z. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 2005, 227, 113–152. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Xin, Z. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 2005, 213, 235–254. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Lee, J. Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Differ. Equ. 2009, 247, 2310–2330. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Lei, Z. Global well-posedness of the incompressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 2018, 228, 969–993. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Xu, L.; Yu, P. On global dynamics of three dimensional magnetohydrodynamics: Nonlinear stability of Alfven waves. Ann. PDE 2018, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Titi, E.S.; Trabelsi, S. Global well-posedness of a 3D MHD model in porous media. J. Geom. Mech. 2019, 11, 621–637. [Google Scholar] [CrossRef] [Green Version]
- Bian, D. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discret. Contin. Dyn. Syst. Ser. S 2016, 9, 1591–1611. [Google Scholar] [CrossRef] [Green Version]
- Bian, D.; Gui, G. On 2-D Boussinesq equations for MHD convection with stratification effects. J. Differ. Equ. 2016, 261, 1669–1711. [Google Scholar] [CrossRef]
- Bian, D.; Liu, J. Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects. J. Differ. Equ. 2017, 263, 8074–8101. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Fei, M. Global well-posedness for the 2D MHD-Boussinesq system with temperature- dependent diffusion. Appl. Math. Lett. 2020, 106, 106399. [Google Scholar] [CrossRef]
- Larios, A.; Pei, Y. On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion. J. Differ. Equ. 2017, 263, 1419–1450. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Chen, Z. Global well-posedness for the MHD-Boussinesq system with the temperature-dependent viscosity. Nonlinear Anal. Real World Appl. 2018, 44, 260–282. [Google Scholar] [CrossRef]
- Bian, D.; Pu, X. Global Smooth Axisymmetic Solutions of the Boussinesq Equations for Magnetohydrodynamics Convection. J. Math. Fluid Mech. 2020, 22, 13. [Google Scholar] [CrossRef]
- Liu, H.; Bian, D.; Pu, X. Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion. Z. Angew. Math. Phys. 2019, 70, 81. [Google Scholar] [CrossRef]
- Li, Y. Global weak solutions to the three-dimensional inviscid Boussinesq system in the presence of magnetic field. Z. Angew. Math. Phys. 2019, 70, 172. [Google Scholar] [CrossRef]
- Majda, A.J. Introduction to PDEs and Waves for the Atmosphere and Ocean; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar]
- Ibrahim, S.; Yoneda, T. Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data. J. Math. Sci. Univ. Tokyo 2013, 20, 1–25. [Google Scholar]
- Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1883, 14, 170–177. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Dover: New York, NY, USA, 1981. [Google Scholar]
- Grenier, E. On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 2000, 53, 1067–1091. [Google Scholar] [CrossRef]
- Hwang, H.J.; Guo, Y. On the dynamical Rayleigh-Taylor instability. Arch. Ration. Mech. Anal. 2003, 167, 235–253. [Google Scholar] [CrossRef]
- Guo, Y.; Tice, I. Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ. Math. J. 2011, 60, 677–712. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Tice, I. Linear Rayleigh-Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 2011, 42, 1688–1720. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, S. On magnetic inhibition theory in non-resistive magnetohydrodynamic fluids. Arch. Ration. Mech. Anal. 2019, 233, 749–798. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Jiang, S. Nonlinear stability and instability in the Rayleigh-Taylor problem of stratified compressible MHD fluids. Calc. Var. Part. Differ. Equ. 2019, 58, 29. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, S. On the dynamical stability and instability of Parker problem. Physica D 2019, 391, 17–51. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, D. On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection. Mathematics 2020, 8, 1049. https://doi.org/10.3390/math8071049
Bian D. On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection. Mathematics. 2020; 8(7):1049. https://doi.org/10.3390/math8071049
Chicago/Turabian StyleBian, Dongfen. 2020. "On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection" Mathematics 8, no. 7: 1049. https://doi.org/10.3390/math8071049
APA StyleBian, D. (2020). On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection. Mathematics, 8(7), 1049. https://doi.org/10.3390/math8071049