Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution
Abstract
:1. Introduction
2. Collective Model with Frequency Dependent on the Individual Claims
2.1. Introducing Sarmanov Dependence
2.2. Simulation from the Collective Model
2.3. Parameters Estimation
- Phase 1
- By MLE, find initial values for the parameters of the marginal distributions. Then, iterate the following two steps:
- Step 1
- (iteration j) Given the parameters for the marginal distributions, find within the interval defined in (5) for this dependence parameter by maximizing the log-likelihood
- Step 2
- Given , obtain new values for the parameters of the marginals by maximizing the log-likelihood function
3. Particular Cases
3.1. Particular Severity Distributions
3.2. Particular Counting Distributions
- (i)
- If , then
- (ii)
- If , then
4. Numerical Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
Appendix A
References
- Erhardt, V.; Czado, C. Modeling dependent yearly claim totals including zero claims in private health insurance. Scand. Actuar. J. 2012, 2, 106–129. [Google Scholar]
- Czado, C.; Kastenmeier, R.; Brechmann, E.C.; Min, A. A mixed copula model for insurance claims and claim sizes. Scand. Actuar. J. 2012, 4, 278–305. [Google Scholar] [CrossRef]
- Krämer, N.; Brechmann, E.; Silvestrini, D.; Czado, C. Total loss estimation using copula-based regression models. Insur. Math. Econ. 2013, 53, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.Y.; Shi, P. A dependent frequency–severity approach to modeling longitudinal insurance claims. Insur. Math. Econ. 2019, 87, 115–129. [Google Scholar] [CrossRef]
- Oh, R.; Shi, P.; Ahn, J.Y. Bonus-Malus premiums under the dependent frequency-severity modeling. Scand. Actuar. J. 2020, 3, 172–195. [Google Scholar] [CrossRef]
- Bahraoui, Z.; Bolancé, C.; Pelican, E.; Vernic, R. On the bivariate distribution and copula. An application on insurance data using truncated marginal distributions. Stat. Oper. Res. Trans. 2015, 39, 209–230. [Google Scholar]
- Abdallah, A.; Boucher, J.; Cossette, H. Sarmanov family of multivariate distributions for bivariate dynamic claim counts model. Insur. Math. Econ. 2016, 68, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Bolancé, C.; Vernic, R. Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. Insur. Math. Econ. 2019, 85, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yuen, K.C. Finite-time and infinite-time ruin probabilities in a two-dimensional delayed renewal risk model with Sarmanov dependent claims. J. Math. Anal. Appl. 2016, 442, 600–625. [Google Scholar] [CrossRef]
- Guo, F.; Wang, D.; Yang, H. Asymptotic results for ruin probability in a two-dimensional risk model with stochastic investment returns. J. Comput. Appl. Math. 2017, 325, 198–221. [Google Scholar] [CrossRef] [Green Version]
- Ratovomirija, G. On mixed Erlang reinsurance risk: Aggregation, capital allocation and default risk. Eur. Actuar. J. 2016, 6, 149–175. [Google Scholar] [CrossRef]
- Ratovomirija, G.; Tamraz, M.; Vernic, R. On some multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and capital allocation. Insur. Math. Econ. 2017, 74, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Vernic, R. Capital allocation for Sarmanov’s class of distributions. Methodol. Comput. Appl. Probab. 2017, 19, 311–330. [Google Scholar] [CrossRef]
- Joe, H.; Xu, J.J. The Estimation Method of Inference Functions for Margins for Multivariate Models. 1996. Available online: https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0225985 (accessed on 1 August 2020).
- Tamraz, M.; Vernic, R. On the evaluation of multivariate compound distributions with continuous severity distributions and Sarmanov’s counting distribution. ASTIN Bull. 2018, 48, 841–870. [Google Scholar] [CrossRef]
Number of Cases | 99,972 Policyholders | |||
---|---|---|---|---|
Frequency | TRUE | Poisson | NB | |
0 | 92,538.00 | 91,482.28 | 92,524.63 | |
1 | 6166.00 | 8118.58 | 6285.65 | |
2 | 1122.00 | 360.24 | 950.48 | |
3 | 125.00 | 10.66 | 170.11 | |
4 | 18.00 | 0.24 | 32.81 | |
5 | 3.00 | 0.00 | 1.73 | |
Chi-Square | 6761.20 | 52.81 | ||
Initial Parameters | ||||
Number of Cases | Mean | Median | STD | Skewness | Pearson’s Correlation | |
---|---|---|---|---|---|---|
Cost per claim | 8872 Claims | 859.92 | 513.50 | 2448.27 | 24.01 | 0.31 |
Cost per policyholder | 7434 Policyholders | 758.13 | 513.50 | 1580.81 | 15.72 | 0.38 |
Gamma | Lognormal | |||||
Cost per claim | Initial Parameter | |||||
AIC | 136,470 | 134,172 | ||||
Cost per policyholder | Initial Parameter | |||||
AIC | 112,829 | 111,557 |
Cost Per Claim | |||||||
Gamma | Lognormal | ||||||
Poisson | NB | Poisson | NB | ||||
0.0877 | r | 0.5998 | 0.0875 | r | 1.2693 | ||
p | 0.8727 | p | 0.9355 | ||||
0.6650 | 0.5892 | 5.8384 | 5.8384 | ||||
0.0008 | 0.0006 | 1.3553 | 1.3552 | ||||
2.8197 | 2.9530 | 17.1549 | 17.5107 | ||||
0.6020 | 0.5625 | 0.3769 | 0.3717 | ||||
AIC | 199,566 | AIC | 199,109 | AIC | 197,249 | AIC | 195,744 |
BIC | 199,583 | BIC | 199,126 | BIC | 197,264 | BIC | 195,759 |
Cost Per Policyholder | |||||||
Gamma | Lognormal | ||||||
Poisson | NB | Poisson | NB | ||||
0.0887 | r | 0.2897 | 0.0887 | r | 0.2897 | ||
p | 0.7655 | p | 0.7655 | ||||
0.7152 | 0.6951 | 5.7882 | 5.7882 | ||||
0.0009 | 0.0009 | 1.3441 | 1.3441 | ||||
2.8157 | 3.0631 | 16.8899 | 18.3588 | ||||
0.6152 | 0.5753 | 0.3824 | 0.3621 | ||||
AIC | 175,690 | AIC | 173,754 | AIC | 174,402 | AIC | 172,374 |
BIC | 175,707 | BIC | 173,769 | BIC | 174,417 | BIC | 172,389 |
Cost Per Claim | |||||
Gamma | Lognormal | ||||
Poisson | NB | Poisson | NB | ||
E(S) | 74.64 | 85.96 | 75.40 | 75.46 | |
158,977.20 | 240,279.00 | 407,210.20 | 412,289.50 | ||
74.62 | 85.89 | 75.33 | 75.33 | ||
158,880.50 | 239,745.70 | 406,504.30 | 411,029.60 | ||
Cost Per Policyholder | |||||
Gamma | Lognormal | ||||
Poisson | NB | Poisson | NB | ||
67.27 | 68.26 | 71.66 | 71.87 | ||
128,654.30 | 174,034.60 | 378,528.60 | 490,725.00 | ||
67.26 | 68.20 | 71.59 | 71.59 | ||
128,584.80 | 173,651.10 | 377,286.30 | 484,877.30 |
Pure Premium, | Risk Premium, | |||
---|---|---|---|---|
Indep. | Depend. | Indep. | Depend. | |
Cost per policyholder | 71.59 | 71.87 | 767.92 | 772.39 |
Cost per claim | 75.33 | 75.46 | 716.45 | 717.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolancé, C.; Vernic, R. Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution. Mathematics 2020, 8, 1400. https://doi.org/10.3390/math8091400
Bolancé C, Vernic R. Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution. Mathematics. 2020; 8(9):1400. https://doi.org/10.3390/math8091400
Chicago/Turabian StyleBolancé, Catalina, and Raluca Vernic. 2020. "Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution" Mathematics 8, no. 9: 1400. https://doi.org/10.3390/math8091400
APA StyleBolancé, C., & Vernic, R. (2020). Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution. Mathematics, 8(9), 1400. https://doi.org/10.3390/math8091400