Finite Element Solution of the Corona Discharge of Wire-Duct Electrostatic Precipitators at High Temperatures—Numerical Computation and Experimental Verification
Abstract
:1. Introductions
- Investigating how the performance of single- and multi- (3-, 5-, and 7-) discharge wires of WDESP is influenced by high-temperature incoming gases with a varying number of discharge wires, as well as its radius.
- The performance of WDESP is expressed in terms of the corona-onset voltage and the corona I–V characteristic of the precipitators.
- Calculating the electrostatic field using the well-known charge simulation method (CSM).
- Modeling of WDESP to calculate the corona I–V characteristic using the finite element method (FEM).
- A set-up of WDESP was performed in the High Voltage Laboratory of Czech Technical University (CTU) in Prague, Czech Republic, to measure the values of the corona-onset voltage and the corona I–V characteristics for different WDESP configurations at high temperatures with a varying number of discharge wires, and its radius.
2. Electrostatic Field Calculations of WDESP at High Temperatures
3. Corona-Onset Voltage Calculation in WDESP at High Temperatures
4. Finite Element Method-Based Corona Current-Voltage Characteristics of WDESP at High Temperatures
4.1. Governing Equations of the Ionized Field in WDESP
4.2. Finite Element-Based Corona Current-Voltage Characteristics of WDESP at High Temperatures
4.2.1. Finite Element Grid
4.2.2. Solution of Poisson’s Equation Using FEM
4.2.3. Potential Updating
4.2.4. Grid Updating
4.2.5. Precipitator Corona Current Calculation
5. Experimental Set-Up and Technique
- (1)
- A 220V AC regulating transformer feeds the HV circuit through a switch to connect or disconnect the supply (Figure 11).
- (2)
- An HV transformer to step up the output voltage of the regulating transformer. The output voltage of the HV transformer was rectified through a rectifier circuit being immersed in the transformer oil with a smoothing capacitor bank consisting of two series capacitors; each one is 0.25 µF and 100 kV. The generated DC voltage was variable in the range 0–200 KV and was applied to the investigated WDESP through an 80 kΩ resistance for reducing the current in case a flash occurs in the WDESP (Figure 11).
- (3)
- The two collecting plates shaping the duct of the WDESP are made of steel and suspended vertically from a steel support with 125 × 250 cm dimensions of each plate with an adjusted 30 cm space between the two collecting plates. All the edges of the collecting plates were curved outside to avoid field concentration at the edges (Figure 1a and Figure 10).
- (4)
- The stressed discharge wires are steel, with the radii of 0.26, 0.935, and 1.975 mm, supported vertically between the plates, with two smooth spheres at each end of the discharge wires for avoiding field intensification, and the space between the wires is 14.5 cm (Figure 12b,c).
- (5)
- A pair of heaters are placed outside the collecting plates to increase the temperature of the ESP (Figure 1a,b).
6. Results and Discussions
6.1. Accuracy of the Analytical Theoretical Calculation Methods
6.2. Electrostatic Field Calculations with High-Temperature WDESP
6.3. Effect of Temperature on Corona-Onset Voltage
6.4. Effect of Temperature on I–V Characteristics Based on FEM and Measured Values Experimentally
7. Conclusions
8. Limitations of the Work
Author Contributions
Funding
Conflicts of Interest
Appendix A. Calculation of Geometry Factor g(x)
References
- Martínez Torres, J.; Pastor Pérez, J.; Sancho Val, J.; McNabola, A.; Martínez Comesaña, M.; Gallagher, J. A Functional Data Analysis Approach for the Detection of Air Pollution Episodes and Outliers: A Case Study in Dublin, Ireland. Mathematics 2020, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Cacciola, M.; Pellicanò, D.; Megali, G.; Lay-Ekuakille, A.; Versaci, M.; Morabito, F.C. Aspects about air pollution prediction on urban environment. In Proceedings of the 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements Protection Environment, Climate Changes and Pollution Control, Lecce, Italy, 3–4 June 2013; pp. 15–20, Code 102275. [Google Scholar]
- Jin, X.-B.; Yang, N.-X.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Kong, J.-L. Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction. Mathematics 2020, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Lachatre, M.; Foret, G.; Laurent, B.; Siour, G.; Cuesta, J.; Dufour, G.; Meng, F.; Tang, W.; Zhang, Q.; Beekmann, M. Air Quality Degradation by Mineral Dust over Beijing, Chengdu and Shanghai Chinese Megacities. Atmosphere 2020, 11, 708. [Google Scholar] [CrossRef]
- Qu, H.; Chan, W.; Xu, A.; Chung, K.; Lau, K.; Guo, P. Visual Analysis of the Air Pollution Problem in Hong Kong. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Sugiyama, T.; Samaratunge, M. Study of Air Pollution Control by Using Micro Plasma Filter. IEEE Trans. Ind. Appl. 2008, 44, 506–511. [Google Scholar] [CrossRef]
- Abdel-Salam, M. Ionization and Deionization Processes in Gases, in High Voltage Engineering, Theory and Practice; Marcel Dekker: New York, NY, USA, 2000; pp. 81–112. ISBN1 0824704029. ISBN2 978-0824704025. [Google Scholar]
- Zhang, L.; He, Y.; Liu, Y.; Yang, F.; He, T.; Liu, L.; Wang, S.; Liu, H. Temperature Analysis Based on Multi-Coupling Field and Ampacity Optimization Calculation of Shore Power Cable Considering Tide Effect. IEEE Access 2020, 8, 119785–119794. [Google Scholar] [CrossRef]
- Salek, F.; Zamen, M.; Hosseini, S.V. Experimental study, energy assessment and improvement of hydroxy generator coupled with a gasoline engine. Energy Rep. 2020, 6, 146–156. [Google Scholar] [CrossRef]
- Theodore, L. Air Pollution Control Equipment Calculations; John Wiley & Sons: New York, NY, USA, 2008; ISBN1 9780470209677. ISBN2 9780470255773. [Google Scholar] [CrossRef]
- Moore, A.D. Electrostatics and Its Applications; John Wiley & Sons: New York, NY, USA, 1973; ISBN1 0471614505. ISBN2 978-0471614500. [Google Scholar]
- Parker, K.; Warne, D.; Johns, A.T. Electrical Operation of Electrostatic Precipitators; Institution of Engineering and Technology (IET): London, UK, 2003; ISBN1 0852961375. ISBN2 9780852961377. [Google Scholar]
- Zheng, C.; Zhang, X.; Yang, Z.; Liang, C.; Guo, Y.; Wang, Y.; Gao, X. Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect. J. Aerosol Sci. 2018, 118, 22–33. [Google Scholar] [CrossRef]
- Ziedan, H.A. Modeling of Corona Discharge in Wire-Duct Electrostatic Precipitators, Book; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2016; ISBN 978-3847348160. [Google Scholar]
- Wen, T.-Y.; Krichtafovitch, I.; Mamishev, A.V. Numerical study of electrostatic precipitators with novel particle-trapping mechanism. J. Aerosol Sci. 2016, 95, 95–103. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, Z.; Zheng, C.; Li, X.; Zhao, C.; Xu, X.; Cen, K. Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator. Adv. Powder Technol. 2016, 27, 1905–1911. [Google Scholar] [CrossRef]
- Farnoosh, N.; Adamiak, K.; Castle, G.S. Numerical calculations of submicron particle removal in a spike-plate electrostatic precipitator. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1439–1452. [Google Scholar] [CrossRef]
- Singer, H.; Steinbigler, H.; Weiss, P. A Charge Simulation Method for the Calculation of High Voltage Fields. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 1660–1668. [Google Scholar] [CrossRef] [Green Version]
- Ziedan, H.A.; Mizuno, A.; Sayed, A.; Ahmed, A. Onset voltage of corona discharge in wire-duct electrostatic precipitators. Int. J. Plasma Environ. Sci. Technol. 2010, 4, 36–44. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, C.; Xiao, G.; Xu, X.; Gao, X.; Luo, Z.; Cen, K. Characteristics of Negative DC Corona Discharge in a Wire–Plate Configuration at High Temperatures. Sep. Purif. Technol. 2014, 139, 5–13. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Mazen, D. Transmission Line Electric Field Induction in Humans as Influenced by Corona Space Charge. Available online: http://cwl2004.powerwatch.org.uk/programme/posters/day3-abelsalem.pdf (accessed on 1 July 2020).
- Medlin, A.J.; Morrow, R.; Fletcher, C.A.J. Calculation of monopolar corona at a high voltage DC transmission line with crosswinds. J. Electrost. 1998, 43, 61–77. [Google Scholar] [CrossRef]
- Ziedan, H.A.; Tlustý, J.; Mizuno, A.; Sayed, A.; Ahmed, A. Corona current-voltage characteristics in wire-duct electrostatic precipitators, Theory versus Experiment. Int. J. Plasma Environ. Sci. Technol. 2010, 4, 154–162. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Wiitanen, D. Calculation of corona onset voltage for duct-type precipitators. IEEE Trans. Ind. Appl. 1993, 29, 274–280. [Google Scholar] [CrossRef]
- Bhatti, M.A. Fundamental Finite Element Analysis and Applications with Mathematica and MATLAB Computations; John Wiley & Sons: New York, NY, USA, 2005; ISBN 978-0-471-64808-6. [Google Scholar]
- Deutsch, W. Úber die Dichtverteilung Unipolarer Lonenstrome. Ann. Physik 1933, 5, 589–613. [Google Scholar]
- Sarma, M.P.; Janischewskyj, W. Analysis of Corona Losses on DC Transmission Lines: 1-Unipolar Lines. IEEE Trans. Power App. Syst. 1969, PAS-88, 718–731. [Google Scholar] [CrossRef]
- Aboelsaad, M.M.; Shafai, L.; Rashwan, M. Numerical assessment of unipolar corona ionised field quantities using the finite-element method. IET Libr. 1989, 136, 79–86. [Google Scholar] [CrossRef]
- Ziedan, H.A.; Tlustý, J.; Mizuno, A.; Sayed, A.; Ahmed, A.; Procházka, R. Finite element solution of corona I-V characteristics in ESP′s with multi discharge wires. Int. J. Plasma Environ. Sci. Technol. 2011, 5, 68–79. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Al-Hamouz, Z. Finite Element Analysis of Monopolar Ionized Fields Including ion Diffusion. J. Phys. D Appl. Phys. 1993, 26, 2202–2211. [Google Scholar] [CrossRef]
- Lisiak-Myszke, M.; Marciniak, D.; Bieliński, M.; Sobczak, H.; Garbacewicz, Ł.; Drogoszewska, B. Application of Finite Element Analysis in Oral and Maxillofacial Surgery—A Literature Review. Materials 2020, 13, 3063. [Google Scholar] [CrossRef] [PubMed]
- Segerlind, L.J. Applied Finite Element Analysis; John Wiley & Sons: New York, NY, USA, 1984; ISBN 978-0-471-80662-2. [Google Scholar]
- Jin, J.-M. The Finite Element Method of Electromagnetic, 3rd ed.; Wiley-IEEE Press: New York, NY, USA, 2014; ISBN 9781118571361. ASIN: 1118571363. [Google Scholar]
- Hutton, D.V. Fundamentals of Finite Element Analysis; McGrow-Hill Companies, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Qiu, L.; Lv, Y.; Li, L. Finite Element Analysis for Stress and Magnetic Field of a 40 kA Protection Inductor. IEEE Trans. Appl. Supercond. 2010, 20, 1936–1939. [Google Scholar] [CrossRef]
- Shimotani, T.; Sato, Y.; Sato, T.; Igarashi, H. Fast Finite-Element Analysis of Motors Using Block Model Order Reduction. IEEE Trans. Magn. 2016, 52, 7207004. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gallandat, N.A.; Mayor, J.R.; Habetler, T.G.; Harley, R.G. Calculating the Electromagnetic Field and Losses in the End Region of a Large Synchronous Generator Under Different Operating Conditions With 3-D Transient Finite-Element Analysis. IEEE Trans. Ind. Appl. 2018, 54, 3281–3293. [Google Scholar] [CrossRef]
- Cacciola, M.; Morabito, F.C.; Polimeni, D.; Versaci, M. Fuzzy characterization of flawed metallic plates with eddy current tests. Prog. Electromagn. Res. 2007, 72, 241–252. [Google Scholar] [CrossRef] [Green Version]
Authors | Configuration | Methodology | Results | |
---|---|---|---|---|
Advantages | Disadvantages | |||
Zheng et al., 2018 [13] | Wire-plate ESP | Simulation of corona discharge and particle transport behavior with the particle space charge effect. | Disregard the effect of high temperatures. | Numerical modeling. Simulation. |
Ziedan, 2016 [14] | Wire-duct ESP | Using CSM and FEM, study the electric field on each wire separately, using varying wire diameters in one device to equalize the electric field on each wire. | Disregard the effect of high temperatures. | Numerical modeling. Experiments. |
Wen et al., 2016 [15] | Guidance-plate-covered ESP | Increasing the collection efficiency of the loaded ESP by particles. | Disregard the effect of high temperatures. | Numerical modeling. Simulation. Experiments. |
Lu et al., 2016 [16] | Wire-plate ESP | Modeling the particle charging with gas flow. | Disregard the effect of high temperatures. | Numerical modeling. |
Farnoosh et al., 2011 [17] | Spike-plate ESP | Using 3-diminution FEM in the calculation of electric fields and I–V characteristics and measuring results. | Disregard the effect of high temperatures. | Numerical modeling. Experiments. |
rc = 0.26 mm | rc = 0.935 mm | rc = 1.975 mm | |||||
---|---|---|---|---|---|---|---|
Max. Error % | Max. Error % | Max. Error % | |||||
Wire | Plate | Wire | Plate | Wire | Plate | ||
Single-wire | 0.035 × 10−6 | 7.53 × 10−3 | 1.79 × 10−6 | 1.04 × 10−3 | 2.88 × 10−6 | 6.12 × 10−3 | |
Multi-discharge wires | 3-wire | 1.35 × 10−6 | 2.90 × 10−3 | 1.68 × 10−6 | 3.50 × 10−3 | 1.97 × 10−6 | 4.03 × 10−3 |
5-wire | 1.35 × 10−6 | 8.54 × 10−3 | 1.68 × 10−6 | 1.10 × 10−3 | 1.78 × 10−6 | 1.91 × 10−3 | |
7-wire | 1.35 × 10−6 | 4.22 × 10−3 | 1.67 × 10−6 | 5.13 × 10−3 | 1.97 × 10−6 | 5.87 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziedan, H.A.; Rezk, H.; Al-Dhaifallah, M.; El-Zohri, E.H. Finite Element Solution of the Corona Discharge of Wire-Duct Electrostatic Precipitators at High Temperatures—Numerical Computation and Experimental Verification. Mathematics 2020, 8, 1406. https://doi.org/10.3390/math8091406
Ziedan HA, Rezk H, Al-Dhaifallah M, El-Zohri EH. Finite Element Solution of the Corona Discharge of Wire-Duct Electrostatic Precipitators at High Temperatures—Numerical Computation and Experimental Verification. Mathematics. 2020; 8(9):1406. https://doi.org/10.3390/math8091406
Chicago/Turabian StyleZiedan, Hamdy A., Hegazy Rezk, Mujahed Al-Dhaifallah, and Emad H. El-Zohri. 2020. "Finite Element Solution of the Corona Discharge of Wire-Duct Electrostatic Precipitators at High Temperatures—Numerical Computation and Experimental Verification" Mathematics 8, no. 9: 1406. https://doi.org/10.3390/math8091406
APA StyleZiedan, H. A., Rezk, H., Al-Dhaifallah, M., & El-Zohri, E. H. (2020). Finite Element Solution of the Corona Discharge of Wire-Duct Electrostatic Precipitators at High Temperatures—Numerical Computation and Experimental Verification. Mathematics, 8(9), 1406. https://doi.org/10.3390/math8091406