An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence
Abstract
:1. Introduction
2. Construction of Higher-Order Scheme
3. Local Convergence
- is differentiable m-times.
- ()
- f has a zero α with known multiplicity m.
- ()
- is non-decreasing, continuous and so that each satisfies
- ()
- is non-decreasing, continuous, and for each satisfying
- ()
- Implication (36) holds.
- ()
- ()
4. Numerical Examples
Some Special Studies
5. Numerical Experimentation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrowski, A.M. Solutions of Equations and System of Equations; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Petkovic, M.; Neta, B.; Petkovic, L.; Dzunic, J. Multipoint Methods for Solving Nonlinear Equations; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis; PWS Publishing Company: Boston, MA, USA, 2001. [Google Scholar]
- Behl, R.; Salimi, M.; Ferrara, M.; Sharifi, S.; Samaher, K.A. Some real life applications of a newly constructed derivative free iterative scheme. Symmetry 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Salimi, M.; Lotfi, T.; Sharifi, S.; Siegmund, S. Optimal Newton-Secant like methods without memory for solving nonlinear equations with its dynamics. Int. J. Comput. Math. 2017, 94, 1759–1777. [Google Scholar] [CrossRef] [Green Version]
- Salimi, M.; Long, N.M.A.N.; Sharifi, S.; Pansera, B.A. A multi-point iterative method for solving nonlinear equations with optimal order of convergence. Jpn. J. Ind. Appl. Math. 2018, 35, 497–509. [Google Scholar] [CrossRef]
- Matthies, G.; Salimi, M.; Sharifi, S.; Varona, J.L. An optimal eighth-order iterative method with its dynamics. Jpn. J. Ind. Appl. Math. 2016, 33, 751–766. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, S.; Ferrara, M.; Salimi, M.; Siegmund, S. New modification of Maheshwari method with optimal eighth order of convergence for solving nonlinear equations. Open Math (Former. Cent. Eur. J. Math.) 2016, 14, 443–451. [Google Scholar]
- Lotfi, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three point methods with optimal convergence order eight and its dynamics. Numer. Algor. 2016, 68, 261–288. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R.; Kanwar, V. An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 2016, 71, 775–796. [Google Scholar] [CrossRef]
- Hueso, J.L.; Martinez, E.; Teruel, C. Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 2015, 53, 880–892. [Google Scholar] [CrossRef] [Green Version]
- Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 2010, 59, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Neta, B. Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 2010, 87, 1023–1031. [Google Scholar] [CrossRef]
- Sharifi, M.; Babajee, D.K.R.; Soleymani, F. Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 2012, 63, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F.; Babajee, D.K.R. Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 2013, 52, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, F.; Babajee, D.K.R.; Lofti, T. On a numerical technique for finding multiple zeros and its dynamics. J. Egypt. Math. Soc. 2013, 21, 346–353. [Google Scholar] [CrossRef]
- Thukral, R. Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. 2013. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. J. Comput. Math. Appl. 2011, 235, 4199–4206. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, X.; Song, Y. Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 2013, 219, 6030–6038. [Google Scholar] [CrossRef]
- Geum, Y.H.; Kim, Y.I.; Neta, B. A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 2015, 270, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Geum, Y.H.; Kim, Y.I.; Neta, B. A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 2016, 283, 120–140. [Google Scholar] [CrossRef] [Green Version]
- Behl, R.; Alshomrani, A.S.; Motsa, S.S. An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. J. Math. Chem. 2018, 56, 2069–2084. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, R.A.; Motsa, S.S.; Torregrosa, J.R. An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algor. 2018, 77, 1249–1272. [Google Scholar] [CrossRef]
- Behl, R.; Zafar, F.; Alshomrani, A.S.; Junjuaz, M.; Yasmin, N. An optimal eighth-order scheme for multiple zeros of univariate functions. Int. J. Comput. Methods 2018, 16, 1843002. [Google Scholar] [CrossRef]
- Zafar, F.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R. Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. J. Math. Chem. 2017, 56, 1884–1901. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, L.; Lin, B.; Wang, G. Fast approach for computing roots of polynomials using cubic clipping. Comput. Aided Geom. Des. 2009, 26, 547–559. [Google Scholar] [CrossRef]
- Bartoň, M.; Jüttler, B. Computing roots of polynomials by quadratic clipping. Comput. Aided Geom. Des. 2007, 24, 125–141. [Google Scholar]
- Ahlfors, L.V. Complex Analysis; McGraw-Hill Book, Inc.: New York, NY, USA, 1979. [Google Scholar]
- Geum, Y.H.; Kim, Y.I.; Neta, B. Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. J. Comput. Appl. Math. 2018, 333, 131–156. [Google Scholar] [CrossRef]
- Ren, H.; Argyros, I.K. Convergnece radius of the Newton method for multiple zeros under Hölder continuous derivative. Appl. Math. Comput. 2010, 217, 612–621. [Google Scholar]
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Shacham, M. Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 1986, 23, 1455–1481. [Google Scholar] [CrossRef]
- Constantinides, A.; Mostoufi, N. Numerical Methods for Chemical Engineers with MATLAB Applications; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Douglas, J.M. Process Dynamics and Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1972; Volume 2. [Google Scholar]
- Anza, S.; Vicente, C.; Gimeno, B.; Boria, V.E.; Armendáriz, J. Long-term multi-factor discharge in multicarrier systems. Phys. Plasmas 2007, 14, 82–112. [Google Scholar] [CrossRef]
Cases | ||
---|---|---|
Case-1 | . | |
Case-2 | ||
Case-3 | ||
Case-4 | ||
Case-5 | ||
Case-6 | ||
Case-7 |
1 | 1.8 (−10) | 5.1 (−12) | 5.1 (−11) | 7.7 (−11) | 8.0 (−12) | 1.4 (−11) | 9.4 (−13) | 1.3 (−14) | 8.4 (−13) | |
2 | 1.7 (−53) | 1.2 (−81) | 1.6 (−72) | 5.9 (−71) | 1.4 (−79) | 9.4 (−78) | 5.8 (−88) | 4.3 (−105) | 7.8 (−89) | |
3 | 1.3 (−311) | 1.5 (−638) | 1.5 (−564) | 7.3 (−552) | 1.2 (−621) | 4.7 (−607) | 1.3 (−689) | 7.4 (−829) | 4.0 (−697) | |
6.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | ||
1 | 9.5 (−3) | 2.0 (−2) | 2.0 (−2) | 2.0 (−2) | 2.7 (−4) | 2.7 (−4) | 2.0 (−2) | 2.0 (−2) | 2.0 (−2) | |
2 | 8.1 (−16) | 4.2 (−18) | 5.2 (−18) | 5.2 (−18) | 9.1 (−14) | 9.1 (−14) | 4.2 (−18) | 4.2 (−18) | 4.2 (−18) | |
3 | 3.9 (−94) | 3.1 (−143) | 1.9 (−142) | 1.7 (−142) | 3.4 (−42) | 3.4 (−42) | 3.0 (−143) | 3.0 (−143) | 3.0 (−143) | |
5.9929 | 7.9858 | 7.9846 | 7.9847 | 3.0005 | 3.0005 | 7.9861 | 7.9862 | 7.9862 | ||
1 | 3.9 (−4) | 2.6 (−4) | 3.9 (−4) | 4.1 (−4) | 2.6 (−4) | 2.7 (−4) | 2.9 (−5) | 3.3 (−5) | 4.3 (−5) | |
2 | 1.0 (−14) | 3.6 (−19) | 5.2 (−17) | 9.8 (−17) | 1.4 (−19) | 1.1 (−18) | 1.1 (−27) | 2.4 (−27) | 1.2 (−25) | |
3 | 3.9 (−78) | 6.1 (−138) | 5.9 (−120) | 1.2 (−117) | 1.0 (−141) | 6.1 (−134) | 3.3 (−207) | 7.5 (−207) | 5.3 (−190) | |
5.9975 | 7.9977 | 7.9945 | 7.9941 | 8.0026 | 7.9971 | 7.9996 | 7.9995 | 7.9996 | ||
1 | 2.5 (−6) | 4.3 (−6) | 4.3 (−6) | 4.3 (−6) | 1.4 (−10) | 1.4 (−10) | 4.3 (−6) | 4.3 (−6) | 4.3 (−6) | |
2 | 1.5 (−18) | 1.4 (−30) | 1.4 (−30) | 1.4 (−30) | 3.8 (−52) | 3.8 (−52) | 1.4 (−30) | 1.4 (−30) | 1.4 (−30) | |
3 | 3.7 (−55) | 5.9 (−153) | 5.9 (−153) | 5.9 (−153) | 5.3 (−260) | 5.3 (−260) | 5.9 (−153) | 5.9 (−153) | 5.9 (−153) | |
3.0000 | 5.0000 | 5.0000 | 5.000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | ||
1 | 2.0 (−7) | 9.5 (−8) | 4.8 (−7) | 6.5 (−7) | 6.3 (−8) | 1.9 (−7) | 2.3 (−8) | 1.5 (−8) | 2.9 (−8) | |
2 | 1.8 (−41) | 1.6 (−55) | 5.7 (−49) | 8.4 (−48) | 4.2 (−57) | 8.0 (−53) | 2.6 (−59) | 1.7 (−15) | 7.0 (−60) | |
3 | 1.0 (−245) | 1.3 (−437) | 2.2 (−384) | 6.6 (−375) | 5.9 (−169) | 9.6 (−416) | 3.2 (−454) | 1.9 (−118) | 7.5 (−473) | |
6.0000 | 8.0000 | 8.0000 | 8.0000 | 2.2745 | 8.0000 | 8.0000 | 14.862 | 8.0000 | ||
1 | 3.5 (−6) | 1.7 (−7) | 2.4 (−7) | 2.4 (−7) | 9.3 (−8) | 9.7 (−8) | 1.2 (−7) | 1.1 (−7) | 1.2 (−7) | |
2 | 1.2 (−32) | 4.4 (−53) | 2.0 (−51) | 2.5 (−51) | 3.0 (−55) | 5.8 (−55) | 1.2 (−54) | 2.6 (−55) | 1.0 (−54) | |
3 | 1.8 (−191) | 9.4 (−418) | 5.3 (−404) | 3.6 (−403) | 3.1 (−435) | 1.0 (−432) | 8.7 (−431) | 2.8 (−436) | 4.0 (−431) | |
6.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000 |
1 | 1.4 (−8) | 4.1 (−10) | 4.1 (−9) | 6.1 (−9) | 6.4 (−10) | 1.1 (−9) | 7.5 (−11) | 1.0 (−12) | 6.7 (−11) | |
2 | 1.4 (−51) | 9.9 (−80) | 1.3 (−70) | 4.7 (−69) | 1.1 (−77) | 7.5 (−76) | 4.7 (−86) | 3.4 (−103) | 6.2 (−87) | |
3 | 1.0 (−309) | 1.2 (−636) | 1.2 (−562) | 5.8 (−550) | 9.7 (−620) | 3.8 (−605) | 1.0 (−687) | 5.9 (−827) | 3.5 (−695) | |
1 | 1.9 (−4) | 8.0 (−4) | 8.5 (−4) | 8.5 (−4) | 1.5 (−7) | 1.5 (−7) | 8.0 (−4) | 8.0 (−4) | 8.0 (−4) | |
2 | 1.4 (−30) | 3.7 (−35) | 5.7 (−35) | 5.6 (−35) | 1.7 (−26) | 1.7 (−26) | 3.7 (−35) | 3.7 (−35) | 3.7 (−35) | |
3 | 3.2 (−187) | 2.0 (−285) | 7.3 (−284) | 6.3 (−284) | 2.5 (−83) | 2.5 (−83) | 1.9 (−285) | 1.9 (−285) | 1.9 (−285) | |
1 | 4.6 (−9) | 2.0 (−9) | 4.6 (−9) | 5.1 (−9) | 2.0 (−9) | 2.3 (−9) | 2.5 (−11) | 3.2 (−11) | 5.6 (−11) | |
2 | 3.2 (−30) | 4.0 (−39) | 8.0 (−35) | 2.9 (−34) | 5.9 (−40) | 3.4 (−38) | 3.3 (−56) | 1.7 (−55) | 4.5 (−52) | |
3 | 4.6 (−157) | 1.1 (−276) | 1.1 (−240) | 4.3 (−236) | 3.1 (−284) | 1.2 (−268) | 3.3 (−415) | 1.7 (−410) | 8.4 (−381) | |
1 | 2.6 (−18) | 1.3 (−17) | 1.3 (−17) | 1.3 (−17) | 4.7 (−31) | 4.7 (−31) | 1.3 (−17) | 1.3 (−17) | 1.3 (−17) | |
2 | 6.2 (−55) | 5.0 (−91) | 5.0 (−91) | 5.0 (−91) | 9.1 (−156) | 9.1 (−156) | 5.0 (−91) | 5.0 (−91) | 5.0 (−91) | |
3 | 8.4 (−165) | 3.5 (−458) | 3.5 (−458) | 3.5 (−458) | 2.4 (−779) | 2.4 (−779) | 3.5 (−458) | 3.5 (−458) | 3.5 (−458) | |
1 | 1.1 (−622) | 2.2 (−655) | 4.4 (−585) | 5.3 (−572) | 3.9 (−673) | 3.1 (−626) | 1.3 (−709) | 3.7 (−736) | 1.6 (−706) | |
2 | 9.7 (−4027) | 1.4 (−5431) | 1.2 (−4777) | 8.7 (−4661) | 11. (−5590) | 9.1 (−5163) | 6.7 (−5376) | 5.3 (−1429) | 1.2 (−5868) | |
3 | 5.4 (−24,451) | 4.1 (−43,641) | 2.7 (−38,318) | 5.1 (−37,371) | 1.1 (−16,775) | 7.8 (−41,455) | 6.1 (−41,287) | 5.9 (−11,726) | 1.1 (−47,165) | |
1 | 1.1 (−6) | 1.3 (−20) | 3.5 (−20) | 3.7 (−20) | 2.1 (−21) | 2.3 (−21) | 4.8 (−21) | 3.5 (−21) | 4.2 (−21) | |
2 | 4.3 (−96) | 2.2 (−157) | 2.1 (−152) | 4.2 (−152) | 6.7 (−164) | 5.1 (−163) | 4.3 (−162) | 4.7 (−164) | 2.9 (−162) | |
3 | 1.5 (−572) | 2.1 (−1251) | 3.8 (−1210) | 1.2 (−1207) | 7.5 (−1304) | 2.5 (−1296) | 1.7 (−1290) | 5.4 (−1307) | 1.6 (−1291) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Argyros, I.K.; Argyros, M.; Salimi, M.; Alsolami, A.J. An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence. Mathematics 2020, 8, 1419. https://doi.org/10.3390/math8091419
Behl R, Argyros IK, Argyros M, Salimi M, Alsolami AJ. An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence. Mathematics. 2020; 8(9):1419. https://doi.org/10.3390/math8091419
Chicago/Turabian StyleBehl, Ramandeep, Ioannis K. Argyros, Michael Argyros, Mehdi Salimi, and Arwa Jeza Alsolami. 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence" Mathematics 8, no. 9: 1419. https://doi.org/10.3390/math8091419
APA StyleBehl, R., Argyros, I. K., Argyros, M., Salimi, M., & Alsolami, A. J. (2020). An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence. Mathematics, 8(9), 1419. https://doi.org/10.3390/math8091419