A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
Abstract
:1. Introduction
2. Oscillation Criteria for Equation (1)
3. Examples
3.1. Example
3.2. Example
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Mathematics and its Applications; Kluwer Academic Publishers Group Dordrecht: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Hale, J.K. Theory of Functional Differential Equations, 2nd ed.; Applied Mathematical Sciences; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Jaroš, J.; Stavroulakis, I.P. Oscillation tests for delay equations. Rocky Mt. J. Math. 1999, 29, 197–207. [Google Scholar] [CrossRef]
- Kon, M.; Sficas, Y.G.; Stavroulakis, I.P. Oscillation criteria for delay equations. Proc. Am. Math. Soc. 2000, 128, 2989–2997. [Google Scholar] [CrossRef]
- Kopladatze, R.G.; Chanturija, T.A. On the oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differentsial’nye Uravneniya 1982, 18, 1463–1465. [Google Scholar]
- Sficas, Y.G.; Stavroulakis, I.P. Oscillation criteria for first-order delay equations. Bull. Lond. Math. Soc. 2003, 35, 239–246. [Google Scholar] [CrossRef]
- Stavroulakis, I.P.; Zhunussova, Z.K.; Ixanov, S.S.; Rababh, B.S. Optimal oscillation conditions for a delay differential equation. Appl. Math. Inf. Sci. 2019, 13, 417–425. [Google Scholar] [CrossRef]
- Ladas, G.; Stavroulakis, I.P. Oscillations caused by several retarded and advanced arguments. J. Differ. Equ. 1982, 44, 134–152. [Google Scholar] [CrossRef] [Green Version]
- Arino, O.; Gyori, I.; Jawhari, A. Oscillation criteria in delay equations. J. Differ. Equ. 1984, 53, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Li, B. Oscillations of first order delay differential equations. Proc. Am. Math. Soc. 1996, 124, 3729–3737. [Google Scholar] [CrossRef] [Green Version]
- Hunt, B.R.; Yorke, J.A. When all solutions of x′ = ∑qi (t) x (t − Ti(t)) oscillate. J. Differ. Equ. 1984, 53, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Fukagai, N.; Kusano, T. Oscillation theory of first order functional differential equations with deviating arguments. Ann. Mat. Pura Appl. 1984, 136, 95–117. [Google Scholar] [CrossRef]
- Grammatikopoulos, M.K.; Kopladatze, R.G.; Stavroulakis, I.P. On the oscillation of solutions of first order differential equations with retarded arguments. Georgian Math. J. 2003, 10, 63–76. [Google Scholar] [CrossRef]
- Ladas, G. Sharp conditions for oscillations caused by delay. Appl. Anal. 1979, 9, 93–98. [Google Scholar] [CrossRef]
- Ladas, G.; Lakshmikantham, V.; Papadakis, J.S. Oscillations of Higher-Order Retarded Differential Equations Generated by Retarded Arguments, Delay and Functional Differential Equations and Their Applications; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Infante, G.; Kopladatze, R.; Stavroulakis, I.P. Oscillation criteria for differential equations with several retarded arguments. Funkcial. Ekvac. 2015, 58, 347–364. [Google Scholar] [CrossRef]
- Kopladatze, R.G. Specific properties of solutions of first order differential equations with several delay arguments. J. Contemp. Math. Anal. 2015, 50, 229–235. [Google Scholar] [CrossRef]
- Braverman, E.; Chatzarakis, G.E.; Stavroulakis, I.P. Iterative oscillation tests for differential equations with several non-monotone arguments. Adv. Differ. Equ. 2016, 87, 18. [Google Scholar]
- Akca, H.; Chatzarakis, G.E.; Stavroulakis, I.P. An oscillation criterion for delay differential equations with several non-monotone arguments. Appl. Math. Lett. 2016, 59, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E. Oscillations caused by several non-monotone deviating arguments. Diff. Equ. Appl. 2017, 9, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Attia, E.R.; Benekas, V.; El-Morshedy, H.A.; Stavroulakis, I.P. Oscillation of first-order linear differential equations with several non-monotone delays. Open Math. 2018, 16, 83–94. [Google Scholar] [CrossRef]
- Bereketoglu, H.; Karakoc, F.; Oztepe, G.S.; Stavroulakis, I.P. Oscillations of first-order differential equations with several non-monotone retarded arguments. Georgian Math. J. 2019, 1, 26. [Google Scholar] [CrossRef]
- Moremedi, G.M.; Jafari, H.; Stavroulakis, I.P. Oscillation criteria for differential equations with several non-monotone deviating arguments. J. Comput. Anal. Appl. 2020, 28, 136–151. [Google Scholar]
- Pituk, M. Oscillation of a linear delay differential equation with slowly vaying coefficient. Appl. Math. Lett. 2017, 73, 29–36. [Google Scholar] [CrossRef]
- Garab, A.; Pituk, M.; Stavroulakis, I.P. A sharp oscillation criterion for linear delay differential equations. Appl. Math. Lett. 2019, 93, 58–65. [Google Scholar] [CrossRef]
- Garab, A. A sharp oscillation criterion for a linear differential equation with variable delay. Symmetry 2019, 11, 1332. [Google Scholar] [CrossRef] [Green Version]
- Garab, A.; Stavroulakis, I.P. Oscillation criteria for first order linear delay differential equations with several variable delays. Appl. Math. Lett. 2020, 106, 106366. [Google Scholar] [CrossRef]
- Moremedi, G.M.; Stavroulakis, I.P. A survey on the oscillation of differential equations with several non-monotone arguments. Appl. Math. Inf. Sci. 2018, 12, 1047–1054. [Google Scholar] [CrossRef]
- Myshkis, A.D. Linear homogeneous differential equations of first order with deviating arguments. Uspehi Matem. Nauk (N.S.) 1950, 5, 160–162. [Google Scholar]
- Tamer Senel, M. Oscillation theorems for second-order neutral dynamic equation on time scales. Appl. Math. Inf. Sci. 2013, 7, 2189–2193. [Google Scholar] [CrossRef] [Green Version]
- Tunc, Q. On the qualitative analyses of integro-differential equations with constant time lag. Appl. Math. Inf. Sci. 2020, 14, 57–63. [Google Scholar]
- Wang, Z.C.; Stavroulakis, I.P.; Qian, X.Z. A survey on the oscillation of solutions of first order linear differential equations with deviating arguments. Appl. Math. E-Notes 2002, 2, 171–191. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Aty, M.; Kavgaci, M.E.; Stavroulakis, I.P.; Zidan, N. A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays. Mathematics 2020, 8, 1492. https://doi.org/10.3390/math8091492
Abdel-Aty M, Kavgaci ME, Stavroulakis IP, Zidan N. A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays. Mathematics. 2020; 8(9):1492. https://doi.org/10.3390/math8091492
Chicago/Turabian StyleAbdel-Aty, Mahmoud, Musa E. Kavgaci, Ioannis P. Stavroulakis, and Nour Zidan. 2020. "A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays" Mathematics 8, no. 9: 1492. https://doi.org/10.3390/math8091492
APA StyleAbdel-Aty, M., Kavgaci, M. E., Stavroulakis, I. P., & Zidan, N. (2020). A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays. Mathematics, 8(9), 1492. https://doi.org/10.3390/math8091492