Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model
Abstract
:1. Introduction
2. Literature Review
2.1. Oil ETF and Energy Mutual Fund
2.2. Volatility Transmission
2.3. Equity and Commodities Markets and Oil
2.4. Bulk Shipping and Oil
2.5. Currency and Oil
2.6. Crude Oil and Energy Fund
2.7. U.S.–China Trade War
2.8. Selection of GARCH-MIDAS Model
3. Sample and Methodology
3.1. Sample Collection
3.2. GARCH-MIDAS Model
4. Empirical Results
4.1. Descriptive Statistics
4.2. Stationary Test
4.3. Test Results of USO before the U.S.–China Trade War
4.4. Test Results of USO during the U.S.–China Trade War
4.5. Test Results of BGF before the U.S.–China Trade War
4.6. Test Results of BGF during the U.S.–China Trade War
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Explore Energy Data by Category, Indicator, Country or Region. Available online: https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2017 (accessed on 10 August 2020).
- International Energy Agency. World Energy Outlook 2017. Available online: https://www.iea.org/reports/world-energy-outlook-2017 (accessed on 10 August 2020).
- DiLallo, M. An Investor’s Guide to Oil ETFs. Available online: https://www.fool.com/investing/investors-guide-to-oil-etfs.aspx (accessed on 10 August 2020).
- Workman, D. Crude Oil Exports by Country. Available online: http://www.worldstopexports.com/worlds-top-oil-exports-country/ (accessed on 8 August 2020).
- Workman, D. Crude Oil Imports by Country. Available online: http://www.worldstopexports.com/crude-oil-imports-by-country/ (accessed on 5 August 2020).
- Conrad, C.; Loch, K.; Rittler, D. On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets. J. Empir. Financ. 2014, 29, 26–40. [Google Scholar] [CrossRef]
- Marashdeh, H.; Afandi, A. Oil price shocks and stock market returns in the three largest oil-producing countries. Int. J. Energy Econ. Policy 2017, 7, 312–322. [Google Scholar]
- Ewing, B.T.; Gormus, A.; Soytas, U. Risk transmission from oil and natural gas futures to emerging market mutual funds. Emerg. Mark. Financ. Trade 2018, 54, 1827–1836. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Lahiani, A.; Nguyen, D.K. Return and volatility transmission between world oil prices and stock markets of the GCC countries. Econ. Model. 2011, 28, 1815–1825. [Google Scholar] [CrossRef] [Green Version]
- United States Commodity Funds (USCF) LLC. USO—United States Oil Fund. Available online: https://www.uscfinvestments.com/our-company (accessed on 8 August 2020).
- Black Rock Global Funds. BlackRock World Energy Fund A2 USD May 2020 Factsheet. 2020. Available online: https://www.blackrock.com/hk/en/literature/fact-sheet/bgf-world-energy-fund-class-a2-usd-factsheet-lu0122376428-hk-en-retail.pdf (accessed on 10 August 2020).
- Nasdaq. CSX: NMX Historical Data. Available online: https://www.nasdaq.com/market-activity/commodities/csx:nmx/historical (accessed on 10 August 2020).
- Boubaker, S.; Jouini, J.; Lahiani, A. Financial contagion between the US and selected developed and emerging countries: The case of the subprime crisis. Q. Rev. Econ. Financ. 2016, 61, 14–28. [Google Scholar] [CrossRef]
- Forbes, K.J.; Rigobon, R. No contagion, only interdependence: Measuring stock market comovements. J. Financ. 2002, 57, 2223–2261. [Google Scholar] [CrossRef]
- Guesmi, K.; Abid, I.; Creti, A.; Chevallier, J. Oil price risk and financial contagion. Energy J. 2018, 39, 97. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Nazlioglu, S.; Gormus, N.A.; Soytas, U. Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis. Energy Econ. 2016, 60, 168–175. [Google Scholar] [CrossRef]
- Kao, Y.; Zhao, K.; Ku, Y.; Nieh, C. The asymmetric contagion effect from the U.S. stock market around the subprime crisis between 2007 and 2010. Econ. Res. Ekon. Istraživanja 2019, 32, 2422–2454. [Google Scholar] [CrossRef] [Green Version]
- Forbes. How Could the U.S.-China Trade War Impact Crude Oil Prices? Available online: https://www.forbes.com/sites/greatspeculations/2018/07/18/how-could-the-us-china-trade-war-impact-crude-oil-prices/#2df5beb47144 (accessed on 10 August 2020).
- Arouri, M.E.H.; Jouini, J.; Nguyen, D.K. On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Econ. 2012, 34, 611–617. [Google Scholar] [CrossRef]
- Balcilar, M.; Hammoudeh, S.; Toparli, E.A. On the risk spillover across the oil market, stock market, and the oil related CDS sectors: A volatility impulse response approach. Energy Econ. 2018, 74, 813–827. [Google Scholar] [CrossRef]
- Berger, T.; Uddin, G.S. On the dynamic dependence between equity markets, commodity futures and economic uncertainty indexes. Energy Econ. 2016, 56, 374–383. [Google Scholar] [CrossRef]
- Bonga-Bonga, L. Uncovering equity market contagion among BRICS countries: An application of the multivariate GARCH model. Q. Rev. Econ. Financ. 2018, 67, 36–44. [Google Scholar] [CrossRef] [Green Version]
- El Hedi Arouri, M.; Jouini, J.; Nguyen, D.K. Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. J. Int. Money Financ. 2011, 30, 1387–1405. [Google Scholar] [CrossRef]
- Engle, R.F.; Ghysels, E.; Sohn, B. Stock market volatility and macroeconomic fundamentals. Rev. Econ. Stat. 2013, 95, 776–797. [Google Scholar] [CrossRef]
- Hamdi, B.; Aloui, M.; Alqahtani, F.; Tiwari, A. Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and granger-causality analysis. Energy Econ. 2019, 80, 536–552. [Google Scholar] [CrossRef]
- Chang, C.; McAleer, M.; Tian, J. Modeling and testing volatility spillovers in oil and financial markets for the USA, the UK, and China. Energy 2019, 12, 1475. [Google Scholar] [CrossRef] [Green Version]
- Dimpfl, T.; Peter, F.J. Analyzing volatility transmission using group transfer entropy. Energy Econ. 2018, 75, 368–376. [Google Scholar] [CrossRef]
- Hamilton, J.D. Understanding crude oil prices. Energy J. 2009, 30, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Business Insider. Market Insider Commodities Oil (WTI). Available online: https://markets.businessinsider.com/commodities/oil-price?type=wti (accessed on 10 August 2020).
- Brown, D.P.; Wu, Y. Mutual fund flows and cross-fund learning within families. J. Financ. 2016, 71, 383–424. [Google Scholar] [CrossRef]
- Gormus, A.; Diltz, J.D.; Soytas, U. Energy mutual funds and oil prices. Manag. Financ. 2018, 44, 374–388. [Google Scholar] [CrossRef]
- Hamilton, J.D. Causes and consequences of the oil shock of 2007–08. Brook. Pap. Econ. Act. 2009, 40, 215–261. [Google Scholar] [CrossRef] [Green Version]
- Kilian, L.; Park, C. The impact of oil price shocks on the U.S. stock market. Int. Econ. Rev. 2009, 50, 1267–1287. [Google Scholar] [CrossRef]
- Mazzeu, J.H.G.; Veiga, H.; Mariti, M.B. Modeling and forecasting the oil volatility index. J. Forecast. 2019, 38, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Fu, Z.; Jiang, Y.; Zeng, X.; Lin, L. Can economic policy uncertainty predict exchange rate volatility? New evidence from the GARCH-MIDAS model. Financ. Res. Lett. 2020, 34, 101258. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X. Recent hikes in oil-equity market correlations: Transitory or permanent? Energy Econ. 2016, 53, 305–315. [Google Scholar] [CrossRef]
- Creti, A.; Joëts, M.; Mignon, V. On the links between stock and commodity markets’ volatility. Energy Econ. 2013, 37, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J. Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models. Energy Econ. 2019, 78, 192–201. [Google Scholar] [CrossRef]
- Basher, S.A.; Haug, A.A.; Sadorsky, P. Oil prices, exchange rates and emerging stock markets. Energy Econ. 2012, 34, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Chiang, I.E.; Hughen, W.K.; Sagi, J.S. Estimating oil risk factors using information from equity and derivatives markets: Estimating oil risk factors from equity and derivatives markets. J. Financ. 2015, 70, 769–804. [Google Scholar] [CrossRef]
- Christoffersen, P.; Pan, X. Oil volatility risk and expected stock returns. J. Bank Financ. 2018, 95, 5–26. [Google Scholar] [CrossRef] [Green Version]
- Mensi, W.; Beljid, M.; Boubaker, A.; Managi, S. Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Econ. Model. 2013, 32, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Salisu, A.A.; Oloko, T.F. Modeling oil price–US stock nexus: A Varma–Bekk–Agarch approach. Energy Econ. 2015, 50, 1–12. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, Q.; Peng, J.; Xiao, H.; Wu, S. Further study of the DEA-based framework for performance evaluation of competing crude oil prices’ volatility forecasting models. Mathematics 2019, 7, 827. [Google Scholar] [CrossRef] [Green Version]
- Robe, M.A.; Wallen, J. Fundamentals, derivatives market information and oil price volatility. J. Futures Mark. 2016, 36, 317–344. [Google Scholar] [CrossRef]
- Gorton, G.; Rouwenhorst, K.G. Facts and fantasies about commodity futures. Financ. Anal. J. 2006, 62, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Delatte, A.; Lopez, C. Commodity and equity markets: Some stylized facts from a copula approach. J. Bank Financ. 2013, 37, 5346–5356. [Google Scholar] [CrossRef] [Green Version]
- Jordan, S.J.; Vivian, A.; Wohar, M.E. Can commodity returns forecast Canadian sector stock returns? Int. Rev. Econ. Financ. 2016, 41, 172–188. [Google Scholar] [CrossRef]
- Lin, B.; Lee, H.; Chung, C. The construction and implication of group scale efficiency evaluation model for bulk shipping corporations. Mathematics 2020, 8, 702. [Google Scholar] [CrossRef]
- Koskinen, M.; Hilmola, O. Investment cycles in the newbuilding market of ice-strengthened oil tankers. Marit. Econ. Logist. 2005, 7, 173–188. [Google Scholar] [CrossRef]
- Kilian, L. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. Am. Econ. Rev. 2009, 99, 1053–1069. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Fan, Y. How does oil price volatility affect non-energy commodity markets? Appl. Energy 2012, 89, 273–280. [Google Scholar] [CrossRef]
- López, R. Volatility contagion across commodity, equity, foreign exchange and treasury bond markets. Appl. Econ. Lett. 2014, 21, 646–650. [Google Scholar] [CrossRef]
- Papailias, F.; Papailias, F.; Thomakos, D.D.; Thomakos, D.D.; Liu, J.; Liu, J. The Baltic Dry Index: Cyclicalities, forecasting and hedging strategies. Empir. Econ. 2017, 52, 255–282. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.J.; Chang, H.Y.; Hsiao, J.L. Does the Baltic dry index drive volatility spillovers in the commodities, currency, or stock markets? Transp. Res. Part E Logist. Transp. Rev. 2019, 127, 265–283. [Google Scholar] [CrossRef]
- Turhan, I.; Hacihasanoglu, E.; Soytas, U. Oil prices and emerging market exchange rates. Emerg. Mark. Financ. Trade 2013, 49 (Suppl. 1), 21–36. [Google Scholar] [CrossRef] [Green Version]
- Ordu, B.M.; Soytaş, U. The relationship between energy commodity prices and electricity and market index performances: Evidence from an emerging market. Emerg. Mark. Financ. Trade 2016, 52, 2149–2164. [Google Scholar] [CrossRef]
- Lin, S.; Lu, J. Did institutional investors’ behavior affect U.S.-China equity market sentiment? Evidence from the U.S.-China trade turbulence. Mathematics 2020, 8, 952. [Google Scholar] [CrossRef]
- Liu, K. Chinese manufacturing in the shadow of the China-US trade war. Econ. Aff. 2018, 38, 307–324. [Google Scholar] [CrossRef]
- Liu, K. The effects of the China–US trade war during 2018–2019 on the Chinese economy: An initial assessment. Econ. Polit. Stud. 2020, 1–20. [Google Scholar] [CrossRef]
- Qiu, L.D.; Zhan, C.; Wei, X. An analysis of the China-US trade war through the lens of the trade literature. Econ. Polit. Stud. 2019, 7, 148–168. [Google Scholar] [CrossRef]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Xu, W.; Ma, F.; Chen, W.; Zhang, B. Asymmetric volatility spillovers between oil and stock markets: Evidence from china and the United States. Energy Econ. 2019, 80, 310–320. [Google Scholar] [CrossRef]
- McAleer, M.; Hoti, S.; Chan, F. Structure and asymptotic theory for multivariate asymmetric conditional volatility. Econ. Rev. 2009, 28, 422–440. [Google Scholar] [CrossRef]
- Engle, R.F.; Kroner, K.F. Multivariate simultaneous generalized ARCH. Econ. Theory 1995, 11, 122–150. [Google Scholar] [CrossRef]
- Lin, B.; Wesseh, P.K.; Appiah, M.O. Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness. Energy Econ. 2014, 42, 172–182. [Google Scholar] [CrossRef]
- Ghysels, E.; Santa-Clara, P.; Valkanov, R. The MIDAS Touch: Mixed Data Sampling Regression Models. Available online: https://cirano.qc.ca/files/publications/2004s-20.pdf (accessed on 10 August 2020).
- Ding, Z.; Granger, C.W.J. Modeling volatility persistence of speculative returns: A new approach. J. Econ. 1996, 73, 185–215. [Google Scholar] [CrossRef]
- Engle, R.F.; Rangel, J.G. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. Rev. Financ. Stud. 2008, 21, 1187–1222. [Google Scholar] [CrossRef]
- Amado, C.; Teräsvirta, T. Modelling volatility by variance decomposition. J. Econ. 2013, 175, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Amado, C.; Teräsvirta, T. Specification and testing of multiplicative time-varying GARCH models with applications. Econ. Rev. 2017, 36, 421–446. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Kleen, O. Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. J. Appl. Econ. 2020, 35, 19–45. [Google Scholar] [CrossRef] [Green Version]
- Vivian, A.; Wohar, M.E. Commodity volatility breaks. J. Int. Financ. Mark. Inst. Money 2012, 22, 395–422. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econ. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wei, Y. The dependence and risk spillover between crude oil market and china stock market: New evidence from a variational mode decomposition-based copula method. Energy Econ. 2018, 74, 565–581. [Google Scholar] [CrossRef]
Variable | Number of Samples | Mean | Standard Deviation | Kurtosis Coefficient | Skewness Coefficient | Min | Max |
---|---|---|---|---|---|---|---|
S&P 500 | 3098 | −0.00023 | 0.013292 | 14.8519 | 0.333595 | −0.135577 | 0.115887 |
BDI | 3098 | 0.000846 | 0.02571 | 3.033844 | −0.142663 | −0.146401 | 0.120718 |
SPGSCI | 3098 | 0.000278 | 0.015316 | 6.114918 | 0.553907 | −0.076829 | 0.125228 |
USDX | 3098 | −8.62 × 10−5 | 0.005086 | 2.601659 | 0.022252 | −0.027344 | 0.030646 |
WTI | 3098 | 0.000121 | 0.029341 | 27.0928 | −0.966676 | −0.319634 | 0.282206 |
USO | 3098 | 0.001112 | 0.024636 | 16.52257 | 1.303312 | −0.154151 | 0.291891 |
BGF | 3098 | 4.27 × 10−5 | 0.012729 | 8.698855 | 0.619081 | −0.078193 | 0.10351 |
Unit Root Test/Variable | S&P 500 | BDI | SPGSCI | USDX | WTI | USO | BGF |
---|---|---|---|---|---|---|---|
ADF | −8.6736 *** | −8.7668 *** | −8.952 *** | −10.602 *** | −11.599 *** | −7.6277 *** | −10.726 *** |
PP | −1060.6 *** | −1059.8 *** | −1055 *** | −957.29 *** | −903.67 *** | −294.73 *** | −873.55 *** |
Variable | ||||||
---|---|---|---|---|---|---|
S&P 500 | 0.0039 | 0.0000 | 0.9370 *** | 0.1706 | 0.3268 ** | 1.1306 ** |
(0.0693) | (0.0146) | (0.0130) | (0.4547) | (0.1353) | (0.5570) | |
BDI | 0.0125 | 0.0000 | 0.9583 *** | 0.0616 | 0.0676 | 2.3830 |
(0.1137) | (0.0266) | (0.0202) | (1.1527) | (0.1200) | (1.6247) | |
SPGSCI | 0.0094 | 0.0000 | 0.9410 *** | 0.4180 | 0.1300 | 1.0000 |
(0.0723) | (0.0221) | (0.0060) | (1.7871) | (0.3486) | (0.9149) | |
USDX | −0.0227 | 0.0000 | 0.9527 *** | 2.3128 | −0.6347 | 4.1284 |
(0.0836) | (0.0129) | (0.0008) | (1.4238) | (0.5955) | (3.1095) | |
WTI | 0.0033 | 0.0000 | 0.9388 *** | 0.4501 | 0.0697 | 1.0001 |
(0.0713) | (0.0191) | (0.0046) | (1.1001) | (0.1154) | (0.6121) |
Variable | ||||||
---|---|---|---|---|---|---|
S&P 500 | −0.1967 | 0.0099 | 0.4263 ** | 1.3237 *** | 0.1346 *** | 104.1241 *** |
(0.1452) | (0.0249) | (0.1841) | (0.3400) | (0.0190) | (7.9875) | |
BDI | −0.0871 | 0.0592 | 0.5129 ** | −4.3287 | 0.4728 ** | 1.4207 ** |
(0.1618) | (0.0659) | (0.2209) | (3.2970) | (0.2300) | (0.3293) | |
SPGSCI | −0.2005 | 0.0073 | 0.4517 *** | 1.0209 ** | 0.1743 *** | 34.0588 |
(0.1601) | (0.0225) | (0.1429) | (0.4280) | (0.0403) | (36.6924) | |
USDX | 0.1744 | 0.0000 | 0.9219 *** | −0.0589 | −0.0560 | 2.9007 |
(0.7725) | (0.0436) | (0.1300) | (3.5322) | (0.0965) | (2.1368) | |
WTI | −0.1868 | 0.0104 | 0.4440 *** | 1.3293 *** | 0.0644 *** | 46.2931 |
(0.1628) | (0.0215) | (0.1325) | (0.4105) | (0.0142) | (106.2170) |
Variable | ||||||
---|---|---|---|---|---|---|
S&P 500 | −0.0249 | 0.1259 ** | 0.7602 *** | −0.0075 | 0.2302 *** | 1.0177 |
(0.0454) | (0.0610) | (0.1340) | (0.2655) | (0.0757) | (1.0698) | |
BDI | −0.0168 | 0.0775 *** | 0.8958 *** | 0.3855 | 0.0338 | 1.000 |
(0.0461) | (0.0161) | (0.0235) | (1.1039) | (0.1250) | (7.4308) | |
SPGSCI | −0.0173 | 0.0854 *** | 0.8919 *** | 1.0465 *** | −0.0638 | 13.1374 *** |
(0.0465) | (0.0088) | (0.0024) | (0.3754) | (0.0560) | (4.7568) | |
USDX | −0.0184 | 0.0881 *** | 0.8834 *** | 0.3390 | 0.1852 | 1.000 |
(0.0475) | (0.0314) | (0.0442) | (1.2343) | (0.5746) | (8.4940) | |
WTI | −0.0169 | 0.0842 *** | 0.8928 *** | 0.9228 *** | −0.0223 | 10.2715 * |
(0.0464) | (0.0061) | (0.0002) | (0.0644) | (0.0173) | (5.7363) |
Variable | ||||||
---|---|---|---|---|---|---|
S&P 500 | 0.0626 | 0.4698 *** | 0.4743 *** | 1.5931 *** | 0.1089 * | 12.9503 |
(0.1222) | (0.0541) | (0.0759) | (0.6139) | (0.0681) | (8.2904) | |
BDI | 0.0023 | 0.3083 | 0.0004 | −30.1550 *** | 2.7549 *** | 1.0000 *** |
(0.1426) | (0.2340) | (1.0040) | (6.2932) | (0.5438) | (0.2348) | |
SPGSCI | 0.0995 | 0.3107 *** | 0.6623 *** | −7.4466 *** | 1.6939 *** | 1.0000 *** |
(0.1273) | (0.0119) | (0.0022) | (2.2623) | (0.4590) | (0.3793) | |
USDX | 0.0383 | 0.1801 *** | 0.8076 *** | 13.7362 | −8.5123 | 1.0717 *** |
(0.1268) | (0.0088) | (0.0000) | (8.7690) | (5.7973) | (0.2641) | |
WTI | 0.0902 | 0.4113 *** | 0.5518 *** | −2.8688 | 0.5088 ** | 1.0000 *** |
(0.1178) | (0.0043) | (0.0052) | (2.4343) | (0.2550) | (0.2981) |
USO | BGF | |||
---|---|---|---|---|
Before the U.S.–China Trade War | During the U.S.–China Trade War | Before the U.S.–China Trade War | During the U.S.–China Trade War | |
S&P 500 | Significant ** | Significant *** | Significant *** | Significant * |
BDI | Insignificant | Significant ** | Insignificant | Significant *** |
SPGSCI | Insignificant | Significant *** | Insignificant | Significant *** |
USDX | Insignificant | Insignificant | Insignificant | Insignificant |
WTI | Insignificant | Significant *** | Insignificant | Significant ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, A.J.; Chang, H.-Y. Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model. Mathematics 2020, 8, 1534. https://doi.org/10.3390/math8091534
Lin AJ, Chang H-Y. Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model. Mathematics. 2020; 8(9):1534. https://doi.org/10.3390/math8091534
Chicago/Turabian StyleLin, Arthur J., and Hai-Yen Chang. 2020. "Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model" Mathematics 8, no. 9: 1534. https://doi.org/10.3390/math8091534
APA StyleLin, A. J., & Chang, H. -Y. (2020). Volatility Transmission from Equity, Bulk Shipping, and Commodity Markets to Oil ETF and Energy Fund—A GARCH-MIDAS Model. Mathematics, 8(9), 1534. https://doi.org/10.3390/math8091534