Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem
Abstract
:1. Introduction
2. The Capacitated Vertex K-Center Problem
2.1. Classical Integer Programming Formulation
2.2. A New Formulation Based on the Minimum Capacitated Dominating Set
3. An Exact Algorithm for the Capacitated Vertex K-Center Problem
Algorithm 1: An exact algorithm for the capacitated vertex k-center problem |
4. Empirical Performance Evaluation
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laporte, G.; Nickel, S.; da Gama, F.S. Location Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Barilan, J.; Kortsarz, G.; Peleg, D. How to allocate network centers. J. Algorithms 1993, 15, 385–415. [Google Scholar] [CrossRef] [Green Version]
- Khuller, S.; Sussmann, Y.J. The capacitated k-center problem. SIAM J. Discret. Math. 2000, 13, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Scaparra, M.P.; Pallottino, S.; Scutellà, M.G. Large-scale local search heuristics for the capacitated vertex p-center problem. Netw. Int. J. 2004, 43, 241–255. [Google Scholar]
- Özsoy, F.A.; Pınar, M.Ç. An exact algorithm for the capacitated vertex p-center problem. Comput. Oper. Res. 2006, 33, 1420–1436. [Google Scholar] [CrossRef] [Green Version]
- Albareda-Sambola, M.; Díaz, J.A.; Fernández, E. Lagrangean duals and exact solution to the capacitated p-center problem. Eur. J. Oper. Res. 2010, 201, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Quevedo-Orozco, D.R.; Ríos-Mercado, R.Z. Improving the quality of heuristic solutions for the capacitated vertex p-center problem through iterated greedy local search with variable neighborhood descent. Comput. Oper. Res. 2015, 62, 133–144. [Google Scholar] [CrossRef]
- Kramer, R.; Iori, M.; Vidal, T. Mathematical models and search algorithms for the capacitated p-center problem. INFORMS J. Comput. 2019, 32, 444–460. [Google Scholar] [CrossRef]
- An, H.C.; Bhaskara, A.; Chekuri, C.; Gupta, S.; Madan, V.; Svensson, O. Centrality of trees for capacitated k-center. Math. Program. 2015, 154, 29–53. [Google Scholar] [CrossRef]
- Daskin, M.S. Network and Discrete Location: Models, Algorithms, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Potluri, A.; Singh, A. Metaheuristic algorithms for computing capacitated dominating set with uniform and variable capacities. Swarm Evol. Comput. 2013, 13, 22–33. [Google Scholar] [CrossRef]
- Yuan, F.; Li, C.; Gao, X.; Yin, M.; Wang, Y. A novel hybrid algorithm for minimum total dominating set problem. Mathematics 2019, 7, 222. [Google Scholar] [CrossRef] [Green Version]
- Hochbaum, D.S.; Shmoys, D.B. A best possible heuristic for the k-center problem. Math. Oper. Res. 1985, 10, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, T.F. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 1985, 38, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Dyer, M.E.; Frieze, A.M. A simple heuristic for the p-centre problem. Oper. Res. Lett. 1985, 3, 285–288. [Google Scholar] [CrossRef]
- Plesník, J. A heuristic for the p-center problems in graphs. Discrete Appl. Math. 1987, 17, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Shmoys, D.B. Computing near-optimal solutions to combinatorial optimization problems. Comb. Optim. 1995, 20, 355–397. [Google Scholar]
- Garcia-Diaz, J.; Sanchez-Hernandez, J.; Menchaca-Mendez, R.; Menchaca-Mendez, R. When a worse approximation factor gives better performance: A 3-approximation algorithm for the vertex k-center problem. J. Heuristics 2017, 23, 349–366. [Google Scholar] [CrossRef]
- Rana, R.; Garg, D. The analytical study of k-center problem solving techniques. Int. J. Inf. Technol. Knowl. Manag. 2008, 1, 527–535. [Google Scholar]
- Robič, B.; Mihelič, J. Solving the k-center problem efficiently with a dominating set algorithm. J. Comput. Inf. Technol. 2005, 13, 225–234. [Google Scholar]
- Mladenović, N.; Labbé, M.; Hansen, P. Solving the p-center problem with tabu search and variable neighborhood search. Netw. Int. J. 2003, 42, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, J.A.; Casado, S. Solving two location models with few facilities by using a hybrid heuristic: A real health resources case. Comput. Oper. Res. 2005, 32, 3075–3091. [Google Scholar] [CrossRef]
- Pullan, W. A memetic genetic algorithm for the vertex p-center problem. Evol. Comput. 2008, 16, 417–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidović, T.; Ramljak, D.; Šelmić, M.; Teodorović, D. Bee colony optimization for the p-center problem. Comput. Oper. Res. 2011, 38, 1367–1376. [Google Scholar] [CrossRef]
- Kaveh, A.; Nasr, H. Solving the conditional and unconditional p-center problem with modified harmony search: A real case study. Sci. Iran. 2011, 18, 867–877. [Google Scholar] [CrossRef] [Green Version]
- Daskin, M.S. A new approach to solving the vertex p-center problem to optimality: Algorithm and computational results. Commun. Oper. Res. Soc. Jpn. 2000, 45, 428–436. [Google Scholar]
- Ilhan, T.; Ozsoy, F.; Pinar, M. An Efficient Exact Algorithm for the Vertex P-Center Problem and Computational Experiments for Different Set Covering Subproblems; Technical Report; Department of Industrial Engineering, Bilkent University: Ankara, Turkey, 2002. [Google Scholar]
- Elloumi, S.; Labbé, M.; Pochet, Y. A new formulation and resolution method for the p-center problem. INFORMS J. Comput. 2004, 16, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Al-Khedhairi, A.; Salhi, S. Enhancements to two exact algorithms for solving the vertex p-center problem. J. Math. Model. Algorithms 2005, 4, 129–147. [Google Scholar] [CrossRef]
- Chen, D.; Chen, R. New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems. Comput. Oper. Res. 2009, 36, 1646–1655. [Google Scholar] [CrossRef]
- Calik, H.; Tansel, B.C. Double bound method for solving the p-center location problem. Comput. Oper. Res. 2013, 40, 2991–2999. [Google Scholar] [CrossRef] [Green Version]
- Contardo, C.; Iori, M.; Kramer, R. A scalable exact algorithm for the vertex p-center problem. Comput. Oper. Res. 2019, 103, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Marinakis, Y. Location Routing Problem. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 2009; pp. 1919–1925. [Google Scholar] [CrossRef]
- Quevedo-Orozco, D.R.; Ríos-Mercado, R.Z. A new heuristic for the capacitated vertex p-center problem. Conference of the Spanish Association for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; pp. 279–288. [Google Scholar]
- Minieka, E. The m-center problem. Siam Rev. 1970, 12, 138–139. [Google Scholar] [CrossRef]
- Garcia-Diaz, J.; Menchaca-Mendez, R.; Menchaca-Mendez, R.; Hernández, S.P.; Pérez-Sansalvador, J.C.; Lakouari, N. Approximation Algorithms for the Vertex K-Center Problem: Survey and Experimental Evaluation. IEEE Access 2019, 7, 109228–109245. [Google Scholar] [CrossRef]
- Li, R.; Hu, S.; Liu, H.; Li, R.; Ouyang, D.; Yin, M. Multi-Start Local Search Algorithm for the Minimum Connected Dominating Set Problems. Mathematics 2019, 7, 1173. [Google Scholar] [CrossRef] [Green Version]
- Cabrera Martínez, A.; Hernández-Gómez, J.C.; Inza, E.P.; Sigarreta, J.M. On the Total Outer k-Independent Domination Number of Graphs. Mathematics 2020, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Liedloff, M.; Todinca, I.; Villanger, Y. Solving capacitated dominating set by using covering by subsets and maximum matching. Discret. Appl. Math. 2014, 168, 60–68. [Google Scholar] [CrossRef]
- Li, R.; Hu, S.; Zhao, P.; Zhou, Y.; Yin, M. A novel local search algorithm for the minimum capacitated dominating set. J. Oper. Res. Soc. 2018, 69, 849–863. [Google Scholar] [CrossRef]
- Reinelt, G. TSPLIB—A traveling salesman problem library. ORSA J. Comput. 1991, 3, 376–384. [Google Scholar] [CrossRef]
- Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. Available online: https://www.gurobi.com/documentation/9.0/refman (accessed on 11 July 2020).
Running Time (Seconds) | |||||
---|---|---|---|---|---|
Instance | OPT | Algorithm 1 | F1C | ||
kroA100_Q1 | 100 | 5 | 895.64 | 2.32 | 10.42 |
6 | 814.87 | 1.46 | 4.18 | ||
kroA100_Q2 | 100 | 10 | 606.57 | 1.86 | 12.64 |
11 | 554.04 | 1.43 | 9.07 | ||
kroA100_Q3 | 100 | 20 | 411.61 | 4.95 | 32.45 |
21 | 376.96 | 2.65 | 33.78 | ||
kroA100_Q4 | 100 | 40 | 325.04 | 1.00 | 12.90 |
41 | 314.23 | 0.72 | 2.67 | ||
kroB100_Q1 | 100 | 5 | 924.57 | 3.39 | 9.27 |
6 | 823.66 | 1.23 | 5.43 | ||
kroB100_Q2 | 100 | 10 | 602.9 | 2.25 | 7.44 |
11 | 559.35 | 1.34 | 4.99 | ||
kroB100_Q3 | 100 | 20 | 425.73 | 11.91 | 26.30 |
21 | 414.77 | 6.56 | 19.76 | ||
kroB100_Q4 | 100 | 40 | 343.57 | 0.77 | 2.22 |
41 | 330.84 | 0.75 | 2.69 | ||
kroC100_Q1 | 100 | 5 | 867.16 | 1.79 | 6.61 |
6 | 762.27 | 1.07 | 8.94 | ||
kroC100_Q2 | 100 | 10 | 580.53 | 2.69 | 3.68 |
11 | 545.69 | 2.27 | 3.32 | ||
kroC100_Q3 | 100 | 20 | 426.82 | 29.29 | 38.61 |
21 | 415.32 | 13.89 | 124.56 | ||
kroC100_Q4 | 100 | 40 | 307.65 | 0.90 | 2.50 |
41 | 288.53 | 0.65 | 1.39 | ||
eil101_Q1 | 101 | 5 | 21.21 | 4.44 | 10.40 |
6 | 18.68 | 1.62 | 9.03 | ||
eil101_Q2 | 101 | 10 | 15.23 | 17.63 | 25.27 |
11 | 13.92 | 6.96 | 18.20 | ||
eil101_Q3 | 101 | 20 | 10.44 | 10.66 | 9.04 |
21 | 10.29 | 7.51 | 5.15 | ||
eil101_Q4 | 101 | 40 | 8.6 | 4.94 | 1.59 |
41 | 8.48 | 2.32 | 1.89 | ||
lin105_Q1 | 105 | 5 | 677.44 | 6.14 | 7.31 |
6 | 610.45 | 2.81 | 6.69 | ||
lin105_Q2 | 105 | 10 | 555.0 | 99.23 | 27.35 |
11 | 476.05 | 152.56 | 27.1 | ||
lin105_Q3 | 105 | 20 | 307.0 | 3.51 | 15.74 |
21 | 307.0 | 3.35 | 25.69 | ||
lin105_Q4 | 105 | 40 | 177.01 | 1.31 | 2.09 |
41 | 162.69 | 0.84 | 1.62 | ||
pr107_Q1 | 107 | 5 | 2630.58 | 21.13 | 868.16 |
6 | 1068.87 | 1.58 | 2.31 | ||
pr107_Q2 | 107 | 10 | 894.42 | 3.07 | 8.51 |
11 | 824.62 | 2.79 | 2.75 | ||
pr107_Q3 | 107 | 20 | 538.51 | 3.17 | 1.55 |
21 | 447.21 | 3.04 | 2.48 | ||
pr107_Q4 | 107 | 40 | 282.84 | 1.88 | 1.10 |
41 | 282.84 | 1.86 | 0.93 | ||
Average time | 9.61 | 30.58 |
Running Time (Seconds) | |||||
---|---|---|---|---|---|
Instance | OPT | Algorithm 1 | F1C | ||
kroa200_Q1 | 200 | 5 | 919.03 | 25.61 | 133.75 |
6 | 808.66 | 10.53 | 67.71 | ||
kroa200_Q2 | 200 | 10 | 599.47 | 34.48 | 247.57 |
11 | 569.94 | 41.1 | 443.19 | ||
kroa200_Q3 | 200 | 20 | 415.49 | 534.92 | 1568.01 |
21 | 403.1 | 824.89 | 852.34 | ||
kroa200_Q4 | 200 | 40 | 293.29 | 76.65 | 242.6 |
41 | 287.45 | 59.69 | 166.92 | ||
kroB200_Q1 | 200 | 5 | 897.66 | 17.59 | 83.57 |
6 | 784.18 | 9.22 | 52.55 | ||
kroB200_Q2 | 200 | 10 | 589.86 | 41.29 | 904.5 |
11 | 567.5 | 27.26 | 126.71 | ||
kroB200_Q3 | 200 | 20 | 412.14 | 1352.51 | 3903.28 |
21 | 399.48 | 391.72 | 1230.63 | ||
kroB200_Q4 | 200 | 40 | 289.27 | 483.67 | 37,907.53 |
41 | 282.4 | 69.25 | 35,200.62 | ||
ts225_Q1 | 225 | 5 | 4000.0 | 127.16 | 118.97 |
6 | 3605.55 | 44.26 | 108.12 | ||
ts225_Q2 | 225 | 10 | 3041.38 | 840.59 | 3037.34 |
11 | 3000.0 | 176.57 | 4372.96 | ||
ts225_Q3 | 225 | 20 | 2000.0 | 407.86 | 473.29 |
21 | 1802.77 | 224.0 | 1566.91 | ||
ts225_Q4 | 225 | 40 | 1414.21 | 194.32 | 1115.63 |
41 | 1118.03 | 170.12 | 4623.0 | ||
pr226_Q1 | 226 | 5 | 4172.52 | 140.19 | 481.23 |
6 | 3778.97 | 53.08 | 213.13 | ||
pr226_Q2 | 226 | 10 | 2863.56 | 102.9 | >86,400 |
11 | 2844.29 | 73.39 | >86,400 | ||
pr226_Q3 | 226 | 20 | 2450.51 | 410.74 | >86,400 |
21 | 2300.54 | 186.73 | >86,400 | ||
pr226_Q4 | 226 | 40 | 1320.98 | 162.73 | >86,400 |
41 | 1166.19 | 87.73 | >86,400 | ||
gr229_Q1 | 229 | 5 | 50.26 | 15971.84 | 3036.74 |
6 | 37.94 | 120.27 | 192.09 | ||
gr229_Q2 | 229 | 10 | 37.94 | 9548.37 | 746.46 |
11 | 28.84 | 4216.9 | 685.63 | ||
gr229_Q3 | 229 | 20 | 23.23 | 8412.5 | 1129.62 |
21 | 22.61 | 2091.64 | 688.22 | ||
gr229_Q4 | 229 | 40 | 19.78 | 4738.61 | 1135.16 |
41 | 19.67 | 7827.95 | 745.42 | ||
a280_Q1 | 280 | 5 | 69.85 | 734.93 | 626.56 |
6 | 58.24 | 50.37 | 340.37 | ||
a280_Q2 | 280 | 10 | 45.25 | 93.96 | 333.76 |
11 | 42.52 | 66.67 | 328.59 | ||
a280_Q3 | 280 | 20 | 31.24 | 700.75 | 6289.73 |
21 | 28.84 | 376.45 | 2186.42 | ||
a280_Q4 | 280 | 40 | 21.54 | 846.97 | 1046.82 |
41 | 20.39 | 772.48 | 21,710.55 | ||
Average time | 1332.78 | >13,726.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornejo Acosta, J.A.; García Díaz, J.; Menchaca-Méndez, R.; Menchaca-Méndez, R. Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem. Mathematics 2020, 8, 1551. https://doi.org/10.3390/math8091551
Cornejo Acosta JA, García Díaz J, Menchaca-Méndez R, Menchaca-Méndez R. Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem. Mathematics. 2020; 8(9):1551. https://doi.org/10.3390/math8091551
Chicago/Turabian StyleCornejo Acosta, José Alejandro, Jesús García Díaz, Ricardo Menchaca-Méndez, and Rolando Menchaca-Méndez. 2020. "Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem" Mathematics 8, no. 9: 1551. https://doi.org/10.3390/math8091551
APA StyleCornejo Acosta, J. A., García Díaz, J., Menchaca-Méndez, R., & Menchaca-Méndez, R. (2020). Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem. Mathematics, 8(9), 1551. https://doi.org/10.3390/math8091551