Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions
Abstract
:1. Introduction
2. Model Development
3. Modeling Results
3.1. Modeling Analysis for the United States
3.2. Worldwide Modeling Analysis
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
SSE | Sum of squared error |
MSE | Mean squared error |
AIC | Akaike’s information criterion |
BIC | Bayesian information criterion |
PC | Pham’s criterion |
PIC | Pham’s information criterion |
PP | Predictive power |
PRR | Predictive ratio-risk |
Appendix A
Date | Cumulative Number of Deaths | Date | Cumulative Number of Deaths | Date | Cumulative Number of Deaths |
---|---|---|---|---|---|
2/29 | 1 | 4/26 | 55,412 | 6/22 | 125,155 |
3/1 | 1 | 4/27 | 56,795 | 6/23 | 126,026 |
3/2 | 6 | 4/28 | 59,265 | 6/24 | 126,845 |
3/3 | 9 | 4/29 | 61,655 | 6/25 | 127,498 |
3/4 | 11 | 4/30 | 63,856 | 6/26 | 128,161 |
3/5 | 12 | 5/1 | 65,753 | 6/27 | 128,673 |
3/6 | 15 | 5/2 | 67,444 | 6/28 | 128,958 |
3/7 | 19 | 5/3 | 68,597 | 6/29 | 129,324 |
3/8 | 22 | 5/4 | 69,921 | 6/30 | 130,050 |
3/9 | 26 | 5/5 | 72,271 | 7/1 | 130,726 |
3/10 | 30 | 5/6 | 74,799 | 7/2 | 131,413 |
3/11 | 38 | 5/7 | 76,928 | 7/3 | 132,039 |
3/12 | 41 | 5/8 | 78,615 | 7/4 | 132,305 |
3/13 | 48 | 5/9 | 80,037 | 7/5 | 132,568 |
3/14 | 58 | 5/10 | 80,787 | 7/6 | 132,946 |
3/15 | 73 | 5/11 | 81,847 | 7/7 | 133,939 |
3/16 | 95 | 5/12 | 83,718 | 7/8 | 135,140 |
3/17 | 121 | 5/13 | 85,540 | 7/9 | 136,114 |
3/18 | 171 | 5/14 | 87,293 | 7/10 | 136,975 |
3/19 | 239 | 5/15 | 89,104 | 7/11 | 137,717 |
3/20 | 309 | 5/16 | 90,324 | 7/12 | 138,102 |
3/21 | 374 | 5/17 | 91,189 | 7/13 | 138,577 |
3/22 | 509 | 5/18 | 92,193 | 7/14 | 139,529 |
3/23 | 689 | 5/19 | 93,750 | 7/15 | 140,550 |
3/24 | 957 | 5/20 | 95,155 | 7/16 | 141,529 |
3/25 | 1260 | 5/21 | 96,569 | 7/17 | 142,495 |
3/26 | 1614 | 5/22 | 97,868 | 7/18 | 143,317 |
3/27 | 2110 | 5/23 | 98,904 | 7/19 | 143,736 |
3/28 | 2754 | 5/24 | 99,519 | 7/20 | 144,274 |
3/29 | 3251 | 5/25 | 100,025 | 7/21 | 145,459 |
3/30 | 4066 | 5/26 | 100,800 | 7/22 | 146,689 |
3/31 | 5151 | 5/27 | 104,635 | 7/23 | 147,881 |
4/1 | 6394 | 5/28 | 105,873 | 7/24 | 149,043 |
4/2 | 7576 | 5/29 | 107,106 | 7/25 | 149,968 |
4/3 | 8839 | 5/30 | 108,139 | 7/26 | 150,509 |
4/4 | 10,384 | 5/31 | 108,790 | 7/27 | 151,106 |
4/5 | 11,793 | 6/1 | 109,485 | 7/28 | 152,436 |
4/6 | 13,298 | 6/2 | 110,632 | 7/29 | 153,901 |
4/7 | 15,526 | 6/3 | 111,736 | 7/30 | 155,366 |
4/8 | 17,691 | 6/4 | 112,786 | 7/31 | 156,826 |
4/9 | 19,802 | 6/5 | 113,773 | 8/1 | 157,949 |
4/10 | 22,038 | 6/6 | 114,490 | 8/2 | 158,416 |
4/11 | 24,062 | 6/7 | 114,874 | 8/3 | 158,978 |
4/12 | 25,789 | 6/8 | 115,472 | 8/4 | 160,338 |
4/13 | 27,515 | 6/9 | 116,576 | 8/5 | 161,657 |
4/14 | 30,081 | 6/10 | 117,574 | 8/6 | 162,860 |
4/15 | 32,712 | 6/11 | 118,490 | 8/7 | 164,152 |
4/16 | 34,905 | 6/12 | 119,290 | 8/8 | 165,138 |
4/17 | 37,448 | 6/13 | 120,004 | 8/9 | 165,672 |
4/18 | 39,331 | 6/14 | 120,340 | 8/10 | 166,241 |
4/19 | 40,901 | 6/15 | 120,772 | 8/11 | 167,745 |
4/20 | 42,853 | 6/16 | 121,630 | 8/12 | 169,131 |
4/21 | 45,536 | 6/17 | 122,449 | 8/13 | 170,415 |
4/22 | 47,894 | 6/18 | 123,205 | 8/14 | 171,535 |
4/23 | 50,234 | 6/19 | 123,934 | 8/15 | 172,606 |
4/24 | 52,191 | 6/20 | 124,516 | 8/16 | 173,128 |
4/25 | 54,256 | 6/21 | 124,786 |
Appendix B
No. | Criteria | Formula | Brief Description |
---|---|---|---|
1 | Sum of square error (SSE) | Measures the total deviations between the estimated values and the actual data. | |
2 | MSE [21] | Measures the difference between the estimated values and the actual data. | |
3 | AIC [24] | AIC = −2log(L) + 2k | Measures the goodness of the fit after considering the penalty of adding more parameters. |
4 | BIC [25] | BIC = −2log(L) + klog(n) | Same as the AIC but the penalty term also depends on the sample size. |
5 | PIC [22] | Takes into account a larger penalty when there is too small of a sample but too many parameters in the model. | |
6 | PRR [21] | Measures the distance of the model estimates from the actual data against the model estimate. | |
7 | PP [21] | Measures the distance of the model estimates from the actual data against the actual data. | |
8 | PC [1] | Slightly increases the penalty each time parameters are added to the model when there is too small of a sample. |
References
- Pham, H. On Estimating the Number of Deaths Related to Covid-19. Mathematics 2020, 8, 655. [Google Scholar] [CrossRef]
- Patch.com. Available online: https://patch.com/new-jersey/oceancity/nj-coronavirus-update-gov-murphy-considers-curfew-31-new-cases (accessed on 15 August 2020).
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- CNN. 2020. Available online: https://www.cnn.com/2020/08/02/health/us-coronavirus-sunday/index.html (accessed on 15 August 2020).
- Worldometers. 2020. Available online: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?#countries (accessed on 17 August 2020).
- CDC. Centers for Disease Control and Prevention. 2020. Available online: https://www.cdc.gov/countries (accessed on 15 August 2020).
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1. [Google Scholar] [CrossRef]
- Pham, H.; Pham, D.H. A novel generalized logistic dependent model to predict the presence of breast cancer based on biomarkers. Concurr. Comput. Pract. Exp. 2020, 32, e5467. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Jit, M.; Klepac, P.; Flasche, S.; Clifford, S.; et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020, 5, e261–e270. [Google Scholar] [CrossRef] [Green Version]
- De Brouwer, E.; Raimondi, D.; Moreau, Y. Modeling the COVID-19 outbreaks and the effectiveness of the containment measures adopted across countries. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, G.; Massa, M.; Riboli, E. Covid-19 epidemic in Italy: Evolution, projections and impact of government measures. Eur. J. Epidemiol. 2020, 35, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef] [PubMed]
- Rajgor, D.D.; Lee, M.H.; Archuleta, S.; Bagdasarian, N.; Quek, S.C. The many estimates of the COVID-19 case fatality rate. Lancet Infect. Dis. 2020, 20, 776–777. [Google Scholar] [CrossRef] [Green Version]
- Battegay, M.; Kuehl, R.; Tschudin-Sutter, S.; Hirsch, H.H.; Widmer, A.F.; Neher, R.A. 2019-novel Coronavirus (2019-nCoV): Estimating the case fatality rate—A word of caution. Swiss Med. Wkly. 2020, 150, w20203. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D.; et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Law, G.R.; Feltbower, R.G.; Taylor, J.C.; Parslow, R.C.; Gilthorpe, M.S.; Boyle, P.; McKinney, P.A. What do epidemiologists mean by ‘population mixing’? Pediatric Blood Cancer 2008, 51, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Pham, H. Predictive Modeling on the Number of Covid-19 Death Toll in the United States Considering the Effects of Coronavirus-Related Changes and Covid-19 Recovered Cases. Int. J. Math. Eng. Manag. Sci. 2020, 5. [Google Scholar] [CrossRef]
- Verhulst, P. Recherches mathe matiques sur la loi d’accroissement de la population. Nouv. Mem. L’academie R. Sci. Belles-Lett. Brux. 1845, 18, 1–41. [Google Scholar]
- Pham, H.; Pham, D.H.; Pham, H. A New Mathematical Logistic Model and Its Applications. Int. J. Inf. Manag. Sci 2014, 25, 79–99. [Google Scholar]
- Pham, H. System Software Reliability; Springer: London, UK, 2006. [Google Scholar]
- Pham, H. A New Criterion for Model Selection. Mathematics 2019, 7, 1215. [Google Scholar] [CrossRef] [Green Version]
- Pham, H. Predictive Modeling on the Number of Covid-19 Death Toll in the United States Considering the Effects of Coronavirus-Related Changes and Covid-19 Recovered Cases. medRxiv 2020. [Google Scholar] [CrossRef]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Second International Symposium on Information Theory; Petrov, B.N., Caski, F.L., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
Selection Criteria | Model 1 | Model 2 | New Model (Model 3) |
---|---|---|---|
MSE (ranking) | 45602771 (3) | 6014847 (2) | 5185574 (1) |
AIC (ranking) | 3002.0 (3) | 2658.6 (2) | 2634.3 (1) |
BIC (ranking) | 3014.5 (3) | 2674.3 (2) | 2653.1 (1) |
PC (ranking) | 1465.8 (3) | 1290.5 (2) | 1271.1 (1) |
PIC (ranking) | 7570059990 (3) | 992449703 (2) | 850434102 (1) |
PRR (ranking) | 31.2 (2) | 25.4 (1) | 72.0 (3) |
PP (ranking) | 433739555 (3) | 415378.8 (1) | 935026.6 (2) |
Selection Criteria | Model 1 | Model 2 | New Model (Model 3) |
---|---|---|---|
MSE (ranking) | 4806104858 (3) | 455263766 (2) | 278915137 (1) |
AIC (ranking) | 4618.6 (3) | 4131.8 (2) | 4031.3 (1) |
BIC (ranking) | 4632.0 (3) | 4148.4 (2) | 4051.3 (1) |
PC (ranking) | 2264.8 (3) | 2016.2 (2) | 1957.6 (1) |
PIC (ranking) | 975639286196 (3) | 91963280768 (2) | 56061942563 (1) |
PRR (ranking) | 94.9 (2) | 21.4 (1) | 158.9 (3) |
PP (ranking) | 7682.6 (2) | 162.6 (1) | 1572213 (3) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, H. Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions. Mathematics 2020, 8, 1628. https://doi.org/10.3390/math8091628
Pham H. Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions. Mathematics. 2020; 8(9):1628. https://doi.org/10.3390/math8091628
Chicago/Turabian StylePham, Hoang. 2020. "Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions" Mathematics 8, no. 9: 1628. https://doi.org/10.3390/math8091628
APA StylePham, H. (2020). Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions. Mathematics, 8(9), 1628. https://doi.org/10.3390/math8091628