A Mathematical Model for the Optimization of Renewable Energy Systems †
Abstract
:1. Introduction
2. Related Work
3. Mathematical Formulation
3.1. Model Design (SIRES)
3.2. Mathematical Submodels
3.3. Mathematical Optimization Model
- : cost of energy.
- : amount of energy for consumption of type j produced from resource i, . The unit of P is kWh/yr.
- : device or equipment for the amount of resource type i, .
- The set of model parameters/data obtained from the known data of the real problem is initialized. The indices (i and j) refer to the type of resource and type of energy, respectively.
- The decision variables in the model are defined.
- The variable assignment process is performed.
- The constraints of the set of decision variables must be satisfied. If the constraints are not satisfied, Step 3, is repeated until a set of values that satisfy the constraint set is found.
- If the constraints are satisfied, then the current value of the COE is calculated, and this variable is updated considering that it is the variable to be optimized.
- In each iteration, a global optimum of the model is checked. If this is not the case, the procedure returns to Step (3).
- If the optimal solution is determined, then the result is shown.
4. Results and Discussion
4.1. Case Study for Off-Grid Region in Valparaíso
4.2. Management and Evaluation of Resources and Load/Demand
4.3. SIRES Configuration
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goal 7: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/sdg7 (accessed on 20 June 2020).
- Saini, B.; Ansari, M.A.; Rana, V. Design of Micro-grid Using Hybrid Energy Source for Remote Location Application. In Proceedings of the 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 18–19 October 2019; pp. 556–560. [Google Scholar]
- Farrok, O.; Ahmed, K.; Tahlil, A.D.; Farah, M.M.; Kiran, M.R.; Islam, M.R. Electrical Power Generation from the Oceanic Wave for Sustainable Advancement in Renewable Energy Technologies. Sustainability 2020, 12, 2178. [Google Scholar] [CrossRef] [Green Version]
- Busu, M. Analyzing the impact of the renewable energy sources on economic growth at the EU level using an ARDL model. Mathematics 2020, 8, 1367. [Google Scholar] [CrossRef]
- Perea-Moreno, A.J.; Manzano-Agugliaro, F. Energy Saving at Cities. Energies 2020, 13, 3758. [Google Scholar] [CrossRef]
- Maheshwari, Z.; Ramakumar, R. Smart Integrated Renewable Energy Systems (SIRES): A Novel Approach for Sustainable Development. Energies 2017, 10, 1145. [Google Scholar] [CrossRef]
- Al-Nory, M.T. Optimal Decision Guidance for the Electricity Supply Chain Integration With Renewable Energy: Aligning Smart Cities Research With Sustainable Development Goals. IEEE Access 2019, 7, 74996–75006. [Google Scholar] [CrossRef]
- Kiesecker, J.; Baruch-Mordo, S.; Heiner, M.; Negandhi, D.; Oakleaf, J.; Kennedy, C.; Chauhan, P. Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development. Sustainability 2019, 12, 281. [Google Scholar] [CrossRef] [Green Version]
- Masip, Y.; Gutierrez, A.; Morales, J.; Campo, A.; Valín, M. Integrated Renewable Energy System based on IREOM Model and Spatial—Temporal Series for Isolated Rural Areas in the Region of Valparaiso, Chile. Energies 2019, 12, 1110. [Google Scholar] [CrossRef] [Green Version]
- Lestari, H.; Arentsen, M.; Bressers, H.; Gunawan, B.; Iskandar, J. Sustainability of Renewable Off-Grid Technology for Rural Electrification: A Comparative Study Using the IAD Framework. Sustainability 2018, 10, 4512. [Google Scholar] [CrossRef] [Green Version]
- Sawle, Y.; Gupta, S.; Bohre, A.K. Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renew. Sustain. Energy Rev. 2018, 81, 2217–2235. [Google Scholar] [CrossRef]
- Masip, Y.; Gil, A.F.; Sánchez, M.G.; Castro, C.; González, S.M.N. Optimization of a Smart Integrated Renewable Energy System for Isolated Rural Villages Using Integer Linear Programming. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama city, Panama, 9–11 October 2019; pp. 161–166. [Google Scholar]
- Bamisile, O.; Huang, Q.; Anane, P.O.K.; Dagbasi, M. Performance Analyses of a Renewable Energy Powered System for Trigeneration. Sustainability 2019, 11, 6006. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Do, M.V.; Hsu, W.L.; Liu, B.L.; Chang, C.Y.; Chen, Y.H.; Yuan, M.H.; Lin, C.F.; Yu, C.P.; Chen, Y.H.; et al. A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant. Energies 2019, 12, 2424. [Google Scholar] [CrossRef] [Green Version]
- Akella, A.; Sharma, M.; Saini, R. Optimum utilization of renewable energy sources in a remote area. Renew. Sustain. Energy Rev. 2007, 11, 894–908. [Google Scholar] [CrossRef]
- Razmjoo, A.; Shirmohammadi, R.; Davarpanah, A.; Pourfayaz, F.; Aslani, A. Stand-alone hybrid energy systems for remote area power generation. Energy Rep. 2019, 5, 231–241. [Google Scholar] [CrossRef]
- Hamilton, J.; Negnevitsky, M.; Wang, X.; Lyden, S. High penetration renewable generation within Australian isolated and remote power systems. Energy 2019, 168, 684–692. [Google Scholar] [CrossRef]
- Akhtari, M.R.; Baneshi, M. Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Convers. Manag. 2019, 188, 131–141. [Google Scholar] [CrossRef]
- Das, M.; Singh, M.A.K.; Biswas, A. Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches—Case of a radio transmitter station in India. Energy Convers. Manag. 2019, 185, 339–352. [Google Scholar] [CrossRef]
- Arora, K.; Kumar, A.; Kamboj, V.K.; Prashar, D.; Jha, S.; Shrestha, B.; Joshi, G.P. Optimization Methodologies and Testing on Standard Benchmark Functions of Load Frequency Control for Interconnected Multi Area Power System in Smart Grids. Mathematics 2020, 8, 980. [Google Scholar] [CrossRef]
- Dehwah, A.H.; Asif, M. Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates. Renew. Energy 2019, 131, 1288–1299. [Google Scholar] [CrossRef]
- Dragan, I. A game theoretic approach for solving multiobjective linear programming problems. Lib. Math. 2010, 30, 149–158. [Google Scholar]
- Diemuodeke, E.; Addo, A.; Oko, C.; Mulugetta, Y.; Ojapah, M. Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm. Renew. Energy 2019, 134, 461–477. [Google Scholar] [CrossRef]
- Rullo, P.; Braccia, L.; Luppi, P.; Zumoffen, D.; Feroldi, D. Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems. Renew. Energy 2019, 140, 436–451. [Google Scholar] [CrossRef]
- Ramakumar, R.; Abouzahr, I.; Ashenayi, K. A knowledge-based approach to the design of integrated renewable energy systems. IEEE Trans. Energy Convers. 1992, 7, 648–659. [Google Scholar] [CrossRef]
- Susanna, M.M.; Teegala, S.K.; Surikuchi, D.K. Design and simulation of standalone integrated renewable energy system for remote areas. IJRET 2016, 5, 192–199. [Google Scholar]
- Sami, B.S. Intelligent Energy Management for Off-Grid Renewable Hybrid System Using Multi-Agent Approach. IEEE Access 2020, 8, 8681–8696. [Google Scholar] [CrossRef]
- Kim, R.; Wang, Y.; Vudata, S.P.; Bhattacharyya, D.; Lima, F.V.; Turton, R. Dynamic Optimal Dispatch of Energy Systems with Intermittent Renewables and Damage Model. Mathematics 2020, 8, 868. [Google Scholar] [CrossRef]
- Ye, G.; Li, G.; Wu, D.; Chen, X.; Zhou, Y. Towards Cost Minimization With Renewable Energy Sharing in Cooperative Residential Communities. IEEE Access 2017, 5, 11688–11699. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Han, Y.; Niu, B.; Liu, L.; Zhang, B. An Improved Brain Storm Optimization for a Hybrid Renewable Energy System. IEEE Access 2019, 7, 49513–49526. [Google Scholar] [CrossRef]
- Ogliari, E.; Grimaccia, F.; Leva, S.; Mussetta, M. Hybrid Predictive Models for Accurate Forecasting in PV Systems. Energies 2013, 6, 1918–1929. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Keyaerts, N.; Azevedo, I.; Meeus, L.; Hancher, L.; Glachant, J.M. How to engage consumers in demand response: A contract perspective. Util. Policy 2013, 27, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Lodewijks, G.; Schott, D. Analysis of a Green Transport Plant for Deep Sea Mining Systems. J. Min. Sci. 2018, 54, 254–269. [Google Scholar] [CrossRef]
- Rajeev, A.; Shanmukha Sundar, K. Design of an off-grid PV system for the rural community. In Proceedings of the 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications (C2SPCA), Bangalore, India, 10–11 October 2013; pp. 1–6. [Google Scholar]
- Li, T.; Hu, W.; Xu, X.; Huang, Q.; Chen, G.; Han, X.; Chen, Z. Optimized Operation of Hybrid System Integrated With MHP, PV and PHS Considering Generation/Load Similarity. IEEE Access 2019, 7, 107793–107804. [Google Scholar] [CrossRef]
- Arfaoui, J.; Rezk, H.; Al-Dhaifallah, M.; Elyes, F.; Abdelkader, M. Numerical Performance Evaluation of Solar Photovoltaic Water Pumping System under Partial Shading Condition using Modern Optimization. Mathematics 2019, 7, 1123. [Google Scholar] [CrossRef] [Green Version]
- Euttamarajah, S.; Ng, Y.H.; Tan, C.K. Energy-Efficient Joint Power Allocation and Energy Cooperation for Hybrid-Powered Comp-Enabled HetNet. IEEE Access 2020, 8, 29169–29175. [Google Scholar] [CrossRef]
- Javaid, N.; Hafeez, G.; Iqbal, S.; Alrajeh, N.; Alabed, M.S.; Guizani, M. Energy Efficient Integration of Renewable Energy Sources in the Smart Grid for Demand Side Management. IEEE Access 2018, 6, 77077–77096. [Google Scholar] [CrossRef]
- Rajanna, S.; Saini, R. Modeling of integrated renewable energy system for electrification of a remote area in India. Renew. Energy 2016, 90, 175–187. [Google Scholar] [CrossRef]
- Lee, S.J.; Yoon, Y. Electricity Cost Optimization in Energy Storage Systems by Combining a Genetic Algorithm with Dynamic Programming. Mathematics 2020, 8, 1526. [Google Scholar] [CrossRef]
- Donado, K.; Navarro, L.; Quintero, M.C.G.; Pardo, M. HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems. Energies 2019, 13, 26. [Google Scholar] [CrossRef] [Green Version]
- Pathak, D.P.; Khatod, D. Economic Aspects of Integrated Renewable Energy System for remote area electrification. In Proceedings of the 2017 14th IEEE India Council International Conference (INDICON), Roorkee, India, 15–17 December 2017; pp. 1–5. [Google Scholar]
- Patel, A.M.; Singal, S.K. Economic analysis of integrated renewable energy system for electrification of remote rural area having scattered population. Int. J. Renew. Energy Res. (IJRER) 2018, 8, 523–539. [Google Scholar]
- Jahid, A.; Monju, M.K.H.; Hossain, M.E.; Hossain, M.F. Renewable Energy Assisted Cost Aware Sustainable Off-Grid Base Stations With Energy Cooperation. IEEE Access 2018, 6, 60900–60920. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Hwang, Y.K.; Ismail, M.; Albani, A. Spatial analysis of wind potential for Malaysia. Int. J. Renew. Energy Res. (IJRER) 2015, 5, 201–209. [Google Scholar]
- Molina, A.; Rondanelli, R. Explorador del Recurso Solar en Chile: Documentación y Manual de Uso; Departamento de Geofísica Facultad de Ciencias Físicas y Matemáticas Universidad de Chile: Santiago, Chile, 2012. [Google Scholar]
- Kanase-Patil, A.; Saini, R.; Sharma, M. Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India. Renew. Energy 2011, 36, 2809–2821. [Google Scholar] [CrossRef]
- Huang, H.; Nie, S.; Lin, J.; Wang, Y.; Dong, J. Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems. Sustainability 2020, 12, 923. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Selection of a Hybrid Renewable Energy Systems for a Low-Income Household. Sustainability 2019, 11, 4282. [Google Scholar] [CrossRef] [Green Version]
- Apt, K.R.; Wallace, M. Constraint Logic Programming Using Eclipse; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- International Renewable Energy Agency. Renewable Power Generation Cost in 2018. Available online: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018 (accessed on 30 June 2020).
- Mapa de Vulnerabilidad Energética. Available online: https://arcgis2.minenergia.cl/portal/apps/webappviewer/index.html?id=3eb0179c5b1e49a2979892316814f7c4 (accessed on 30 June 2020).
- Explorador Solar. Available online: http://www.minenergia.cl/exploradorsolar (accessed on 6 July 2020).
- Murthy, K.; Rahi, O. Preliminary assessment of wind power potential over the coastal region of Bheemunipatnam in northern Andhra Pradesh, India. Renew. Energy 2016, 99, 1137–1145. [Google Scholar] [CrossRef]
- Murthy, K.; Rahi, O. A comprehensive review of wind resource assessment. Renew. Sustain. Energy Rev. 2017, 72, 1320–1342. [Google Scholar] [CrossRef]
- Cámara Chilena de la Construcción. Estudio de Usos Finales y Curva de Oferta de la Conservación de la Energía en el Sector Residencial; Gobierno de Chile: Santiago, Chile, 2010.
- Norma Técnica que Determina Algoritmo para la Verificación de la Contribución Solar Mínima de los Sistemas Solares Térmicos Acogidos a la Franquicia Tributaria de la LEY N° 20.897; Gobierno de Chile: Santiago, Chile, 2016.
- Paris Agreement: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/frameworks/parisagreement (accessed on 15 July 2020).
- Ministerio de Energía de Chile. Energía 2050: Política Energética de Chile. Available online: http://www.energia.gob.cl/sites/default/files/energia_2050_-_politica_energetica_de_chile.pdf (accessed on 30 June 2020).
- Factores de Emisión—Energía Abierta|Comisión Nacional de Energía. Available online: http://energiaabierta.cl/visualizaciones/factor-de-emision-sic-sing/ (accessed on 20 July 2020).
- Instituto de Asuntos Públicos. Determinación de los factores de emisión para los Alcances 1 y 2 de la estimación de la huella de carbono; Universidad de Chile: Santiago, Chile, 2011. [Google Scholar]
Authors | Energy Systems | Equations |
---|---|---|
Li et al. [35] | Solar Photovoltaic (PV) |
|
Huang et al. [48] | Solar Power Generation (SPV) |
|
Babatunde et al. [49] | Wind Energy (WES) |
|
Hamilton et al. [17] Kanase-Patil et al. [47] | Biomass Gasifier (BM) |
|
Chang et al. [14] | Biogas (BG) |
|
Masip et al. [9] | Solar Thermal Collector (STC) |
|
Scenario | Available Resources | ||||
---|---|---|---|---|---|
BM kWh/yr | WES kWh/m/yr | SPV kWh/m/yr | STC kWh/yr | BG kWh/yr | |
S1 | 912.500 | 158.050 | 941.700 | 941.700 | 1558.600 |
S2 | 0.000 | 158.050 | 941.700 | 941.700 | 0.000 |
S3 | 912.500 | 259.200 | 1949.100 | 1949.100 | 1558.600 |
Production Cost USD $/kWh | 0.080 | 0.170 | 0.085 | 0.100 | 0.080 |
Cost of O&M USD $/kWh | 0.005 | 0.025 | 0.020 | 0.025 | 0.005 |
Scenario | Energy Production | Resources | COE $/kWh | ||||
---|---|---|---|---|---|---|---|
BM | WES | BG | SPV | STC | |||
S1 | Electricity | 58.40 | - | - | 41.60 | - | 0.10 |
Cooking | - | - | 100.00 | - | - | ||
Hot water | - | - | 25.70 | - | 74.30 | ||
S2 | Electricity | - | - | - | 100.00 | - | 0.12 |
Cooking | - | - | - | - | - | ||
Hot water | - | - | - | - | 100.00 | ||
S3 | Electricity | 58.40 | - | - | 41.60 | - | 0.10 |
Cooking | - | - | 100.00 | - | - | ||
Hot water | - | - | 25.70 | - | 74.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Sánchez, M.; Macia, Y.M.; Fernández Gil, A.; Castro, C.; Nuñez González, S.M.; Pedrera Yanes, J. A Mathematical Model for the Optimization of Renewable Energy Systems. Mathematics 2021, 9, 39. https://doi.org/10.3390/math9010039
Gómez Sánchez M, Macia YM, Fernández Gil A, Castro C, Nuñez González SM, Pedrera Yanes J. A Mathematical Model for the Optimization of Renewable Energy Systems. Mathematics. 2021; 9(1):39. https://doi.org/10.3390/math9010039
Chicago/Turabian StyleGómez Sánchez, Mariam, Yunesky Masip Macia, Alejandro Fernández Gil, Carlos Castro, Suleivys M. Nuñez González, and Jacqueline Pedrera Yanes. 2021. "A Mathematical Model for the Optimization of Renewable Energy Systems" Mathematics 9, no. 1: 39. https://doi.org/10.3390/math9010039
APA StyleGómez Sánchez, M., Macia, Y. M., Fernández Gil, A., Castro, C., Nuñez González, S. M., & Pedrera Yanes, J. (2021). A Mathematical Model for the Optimization of Renewable Energy Systems. Mathematics, 9(1), 39. https://doi.org/10.3390/math9010039