A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method
Abstract
:1. Introduction
2. Main Idea
2.1. Sinc Integration
2.2. CESTAC Method and the CADNA Library
- The termination criterion (5) which is based on the FPA, depends on the existence of the exact solution. But in the CESTAC method we do not need to have the exact solution. The termination criterion of the CESTAC method depends on two successive approximations.
- In the FPA, stopping condition (5) depends on the value , but in the CESTAC method we do not have this parameter.
- In the FPA, since we do not know the optimal , so for large values we will produce extra iterations. But in the CESTAC method we can avoid producing the extra iterations.
- In the CESTAC method, we can produce the informatical zero sign to show the NCSDs, but in the FPA we do not have this ability.
- In the CESTAC method, we can find the optimal approximation, the optimal error and the optimal step of numerical procedure, but in the FPA we can not find them.
- In the CESTAC method, we can show some of numerical instabilities but in the FPA we can not show them.
3. Numerical Results
Algorithm 1 The algorithm of the SE Sinc integration rule based on the CESTAC method. |
|
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Naik, P.A.; Zu, J.; Owolabi, K.M. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos Solitons Fractals 2020, 138, 109826. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.A. Global dynamics of a fractional order SIR epidemic model with memory. Int. J. Biomath. 2020. [Google Scholar] [CrossRef]
- Naik, P.A.; Yavuz, M.; Zu, J. The Role of Prostitution on HIV Transmission with Memory: A Modeling Approach. Alex. Eng. J. 2020, 59, 2513–2531. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio Fractional Derivative to Solve the Fractional Model of Energy Supply-Demand System. Math. Model. Eng. Probl. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Garud, R.M.; Kore, S.V.; Kore, V.S.; Kulkarni, G.S. A short review on process and applications of reverse osmosis. Univers. J. Environ. Res. Technol. 2011, 1, 233–238. [Google Scholar]
- Wimalawansa, S.J. Purification of contaminated water with reverse osmosis: Effective solution of providing clean water for human needs in developing countries. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 75–89. [Google Scholar]
- Warsinger, D.M.; Tow, E.W.; Nayar, K.G.; Maswadeh, L.A.; Lienhard, V.J.H. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res. 2016, 106, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Paulina Maure, O.; Mungkasi, S. Application of numerical integration in solving a reverse osmosis model. Aip Conf. Proc. 2019, 2202, 020043. [Google Scholar] [CrossRef]
- Bartman, A.R.; McFall, C.W.; Christofides, P.D.; Cohen, Y. Model-predictive control of feed flow reversal in a reverse osmosis desalination process. J. Process. Control. 2009, 19, 433–442. [Google Scholar] [CrossRef]
- Al-haj Ali, M.; Ajbar, A.; Ali, E.; Alhumaizi, K. Robust model-based control of a tubular reverse-osmosis desalination unit. Desalination 2010, 255, 129–136. [Google Scholar]
- Janghorban Esfahani, I.; Ifaei, P.; Rshidi, J.; Yoo, C.K. Control performance evaluation of reverse osmosis desalination system based on model predictive control and PID controllers. Desalin. Water Treat. 2016, 57, 26692–26699. [Google Scholar] [CrossRef]
- Li, D.; Yang, N.; Niu, R.; Qiu, H.; Xi, Y. FPGA based QDMC control for reverse-osmosis water desalination system. Desalination 2012, 285, 83–90. [Google Scholar] [CrossRef]
- Fulford, G.R.; Broadbridge, P. Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Abbas, A. Model predictive control of a reverse osmosis desalination unit. Desalination 2006, 194, 268–280. [Google Scholar] [CrossRef]
- Sanjaya, F.; Mungkasi, S. A simple but accurate explicit finite difference method for the advection diffusion equation. J. Phys. Conf. Ser. 2017, 909, 012038. [Google Scholar] [CrossRef]
- Williams, F.A. A nonlinear diffusion problem relevent to sedalination by reverse osmosis. SIAM J. Appl. Math. 1969, 17, 59–73. [Google Scholar] [CrossRef]
- Mastroianni, G.; Monegato, G. Some new applications of truncated Gauss-Laguerre quadrature formulas. Numer. Algorithms 2008, 49, 283–297. [Google Scholar] [CrossRef]
- Muftahov, I.; Tynda, A.; Sidorov, D. Numeric solution of Volterra integral equations of the first kind with discontinuous kernels. J. Comput. Appl. Math. 2017, 313, 119–128. [Google Scholar] [CrossRef]
- Sizikov, V.; Sidorov, D. Generalized quadrature for solving singular integral equations of Abel type in application to infrared tomography. Appl. Numer. Math. 2016, 106, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Xu, D.; Guo, J. The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel. Appl. Numer. Math. 2021, 159, 239–258. [Google Scholar] [CrossRef]
- Rahmoune, A.; Guechi, A. Sinc-Nyström methods for Fredholm integral equations of the second kind over infinite intervals. Appl. Numer. Math. 2020, 157, 579–589. [Google Scholar] [CrossRef]
- Okayama, T.; Shintaku, Y.; Katsuura, E. New conformal map for the Sinc approximation for exponentially decaying functions over the semi-infinite interval. J. Comput. Appl. Math. 2020, 373, 112358. [Google Scholar] [CrossRef] [Green Version]
- Weber, V.; Daul, C.; Baltensperger, R. Radial numerical integrations based on the sinc function. Comput. Phys. Commun. 2004, 163, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Valid implementation of Sinc-collocation method to solve the fuzzy Fredholm integral equation. J. Comput. Appl. Math. 2020, 370, 112632. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. Valid implementation of the Sinc-collocation method to solve the linear integral equations by CADNA library. J. Math. Model. 2019, 7, 63–84. [Google Scholar]
- Alt, R.; Lamotte, J.-L.; Markov, S. Stochastic arithmetic, Theory and experiments. Serdica J. Comput. 2010, 4, 1–10. [Google Scholar]
- Graillat, S.; Jézéquel, F.; Wang, S.; Zhu, Y. Stochastic arithmetic in multi precision. Math. Comput. Sci. 2011, 5, 359–375. [Google Scholar] [CrossRef]
- Graillat, S.; Jézéquel, F.; Picot, R. Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic. Electron. Notes Theor. Comput. Sci. 2015, 317, 55–69. [Google Scholar] [CrossRef]
- Vignes, J. Discrete Stochastic Arithmetic for Validating Results of Numerical Software. Spec. Issue Numer. Algorithms 2004, 37, 377–390. [Google Scholar] [CrossRef]
- Vignes, J. A stochastic arithmetic for reliable scientific computation. Math. Comput. Simulation 1993, 35, 233–261. [Google Scholar] [CrossRef]
- Jézéquel, F.; Mecanique, C.R. A dynamical strategy for approximation methods. Comptes Rendus Mec. 2006, 334, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Chesneaux, J.M.; Jézéquel, F. Dynamical control of computations using the Trapezoidal and Simpson’s rules. J. Univers. Comput. Sci. 1998, 4, 2–10. [Google Scholar]
- Scott, N.S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M. Numerical ‘health check’ for scientific codes: The CADNA approach. Comput. Phys. Commun. 2007, 176, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Abbasbandy, S.; Fariborzi Araghi, M.A. Numerical solution of improper integrals with valid implementation. Math. Comput. Appl. 2002, 7, 83–91. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Fariborzi Araghi, M.A. The valid implementation of numerical integration methods. Far East J. Appl. Math. 2002, 8, 89–101. [Google Scholar]
- Abbasbandy, S.; Fariborzi Araghi, M.A. A stochastic scheme for solving definite integrals. Appl. Numer. Math. 2005, 55, 125–136. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Dynamical control of computations using the Gauss-Laguerre integration rule by applying the CADNA library. Adv. Appl. Math. Sci. 2016, 16, 1–18. [Google Scholar]
- Abbasbandy, S.; Fariborzi Araghi, M.A. The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree. Appl. Numer. Math. 2004, 50, 279–290. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Dreglea, A.; He, J.H.; Avazzadeh, Z.; Suleman, M.; Fariborzi Araghi, M.A.; Sidorov, D.; Sidorov, N. Error estimation of the homotopy perturbation method to solve second kind Volterra integral equations with piecewise smooth kernels: Application of the CADNA library. Symmetry 2020, 12, 1730. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D.; Sizikov, V.; Sidorov, N. Control of accuracy on Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method. Appl. Comput. Math. Int. J. 2020, 19, 81–105. [Google Scholar]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer. Algorithms 2019, 81, 237–267. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. A novel approach to find optimal parameter in the homotopy-regularization method for solving integral equations. Appl. Math. Inf. Sci. 2020, 14, 1–8. [Google Scholar]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. Homotopy regularization method to solve the singular Volterra integral equations of the first kind. Jordan J. Math. Stat. 2018, 11, 1–12. [Google Scholar]
- Abbasbandy, S.; Fariborzi Araghi, M.A. A reliable method to determine the ill-condition functions using stochastic arithmetic. Southwest Pure Appl. Math. 2002, 1, 33–38. [Google Scholar]
- Noeiaghdam, S.; Sidorov, D.; Muftahov, I.; Zhukov, A.V. Control of Accuracy on Taylor-Collocation Method for Load Leveling Problem. Bull. Irkutsk. State Univ. Ser. Math. 2019, 30, 59–72. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Finding the optimal step of fuzzy Newton-Cotes integration rules by using CESTAC method. J. Fuzzy Set Valued Anal. 2017, 2, 62–85. [Google Scholar]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. A valid scheme to evaluate fuzzy definite integrals by applying the CADNA library. Int. J. Fuzzy Syst. Appl. 2017, 6, 1–20. [Google Scholar] [CrossRef]
- Anandan, P.; Gagliano, S.; Bucolo, M. Computational models in microfluidic bubble logic. Microfluid. Nanofluid. 2015, 18, 305–321. [Google Scholar] [CrossRef]
- Maleknejad, K.; Nedaiasl, K. Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations. Comput. Math. Appl. 2011, 62, 3292–3303. [Google Scholar] [CrossRef] [Green Version]
- Okayama, T.; Matsuo, T.; Sugihara, M. Error estimates with explicit constants for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Math. Eng. Tech. Rep. 2009, 124, 361–394. [Google Scholar] [CrossRef]
- Stenger, F. Numerical Methods Based on Sinc and Analytic Functions; Springer: New York, NY, USA, 1993. [Google Scholar]
N | ||
---|---|---|
1 | 0.00000000000000084180 | 0.45137264647546598839 |
2 | 0.00000000712430431113 | 0.45137263935116250790 |
3 | 0.00001074160118302896 | 0.45136190487428379248 |
4 | 0.00052187367223941405 | 0.45085077280322738424 |
5 | 0.00473085615864523180 | 0.44664179031682160748 |
⋮ | ⋮ | ⋮ |
70 | 0.45101402541193652551 | 0.00035862106353029555 |
71 | 0.45104253498242569131 | 0.00033011149304112974 |
72 | 0.45106860700963080646 | 0.00030403946583601460 |
73 | 0.45109246480836207027 | 0.00028018166710475079 |
74 | 0.45111431073052332685 | 0.00025833574494349421 |
75 | 0.45113432659597790808 | 0.00023831987948891298 |
⋮ | ⋮ | ⋮ |
115 | 0.45135926690996436283 | 0.00001337956550245822 |
116 | 0.45136010946175447733 | 0.00001253701371234373 |
117 | 0.45136089571120602271 | 0.00001175076426079835 |
118 | 0.45136162963572618034 | 0.00001101683974064072 |
119 | 0.45136231494700762568 | 0.00001033152845919538 |
120 | 0.45136295503663781403 | 0.00000969143882900703 |
N | ||
---|---|---|
1 | −0.07487258647363877195 | 0.52624523294910563465 |
2 | −0.00604724948428521803 | 0.45741989595975202088 |
3 | −0.00000000000000000000 | 0.45137264647546682106 |
4 | 0.00000000000000100272 | 0.45137264647546582186 |
5 | 0.00124777017944717656 | 0.45012487629601966033 |
6 | 0.14716039370480357706 | 0.30421225277066321624 |
7 | 0.34228190723429141595 | 0.10909073924117540511 |
8 | 0.41727733472368883083 | 0.03409531175177799023 |
9 | 0.44076103702481461699 | 0.01061160945065220407 |
10 | 0.44803323600877137389 | 0.00333941046669544717 |
11 | 0.45029977379471108900 | 0.00107287268075573206 |
12 | 0.45099905426472036707 | 0.00037359221074645399 |
13 | 0.45121262680892160191 | 0.00016001966654521915 |
14 | 0.45128676282067509140 | 0.00008588365479172966 |
15 | 0.45132626577120954492 | 0.00004638070425727614 |
16 | 0.45135511140220285764 | 0.00001753507326396342 |
17 | 0.45137422477522654019 | 0.00000157829975971913 |
Small Values | Large Values | |||||
---|---|---|---|---|---|---|
N | 120 | 120 | 59 | 18 | 1 | 1 |
Small Values | Large Values | |||||
---|---|---|---|---|---|---|
N | 17 | 17 | 12 | 8 | 2 | 1 |
N | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
⋮ | ⋮ | ⋮ | ⋮ |
535 | 0.451372646475095 | ||
536 | 0.451372646475107 | ||
537 | 0.451372646475117 | ||
538 | 0.451372646475127 | ||
539 | 0.451372646475138 | ||
540 | 0.451372646475148 | ||
541 | 0.451372646475157 | ||
542 | 0.451372646475166 | ||
543 | 0.451372646475176 | ||
544 | 0.45137264647518 | ||
545 | 0.451372646475192 |
N | |||
---|---|---|---|
1 | 0.52624515171056 | ||
2 | 0.457419921860400 | ||
3 | 0.451372646475466 | ||
4 | 0.451372646475465 | ||
5 | 0.450124876296019 | ||
6 | 0.147160580742403 | 0.145912810562956 | 0.304212065733063 |
7 | 0.342281852038361 | 0.19512127129595 | 0.10909079443710 |
8 | 0.417277334723689 | ||
9 | 0.440761051486252 | ||
10 | 0.448033241254691 | ||
11 | 0.450299775805271 | ||
⋮ | ⋮ | ⋮ | ⋮ |
44 | 0.451372644708314 | ||
45 | 0.451372645943506 | ||
46 | 0.451372646738228 | ||
47 | 0.451372647057581 | ||
⋮ | ⋮ | ⋮ | ⋮ |
73 | 0.451372646475593 | ||
74 | 0.451372646475533 | ||
75 | 0.451372646475486 | ||
76 | 0.451372646475458 | ||
77 | 0.451372646475445 | ||
78 | 0.451372646475444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noeiaghdam, S.; Sidorov, D.; Zamyshlyaeva, A.; Tynda, A.; Dreglea, A. A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method. Mathematics 2021, 9, 48. https://doi.org/10.3390/math9010048
Noeiaghdam S, Sidorov D, Zamyshlyaeva A, Tynda A, Dreglea A. A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method. Mathematics. 2021; 9(1):48. https://doi.org/10.3390/math9010048
Chicago/Turabian StyleNoeiaghdam, Samad, Denis Sidorov, Alyona Zamyshlyaeva, Aleksandr Tynda, and Aliona Dreglea. 2021. "A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method" Mathematics 9, no. 1: 48. https://doi.org/10.3390/math9010048
APA StyleNoeiaghdam, S., Sidorov, D., Zamyshlyaeva, A., Tynda, A., & Dreglea, A. (2021). A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method. Mathematics, 9(1), 48. https://doi.org/10.3390/math9010048