Binary Programming Model for Rostering Ambulance Crew-Relevance for the Management and Business
Abstract
:1. Introduction
- Uncertainty and uniqueness—risk and uncertainty are an unavoidable part of any decision-making processes, but seriousness and the weight of possible bad outcomes in the health care sector make these activities even more complex;
- Quality of services—services are the main output of health care institutions, but their outcome depends also on the patient, and this makes it extremely hard to quantify and compare the quality of services. The main output of health care services is health, which is almost an immeasurable category;
- Human resources management—this is a very complex process in health care organizations due to the necessity of coordination of different professionals. The autonomy and superior status of medical experts make it even more challenging;
- Cooperation and communication—good relationships are the main prerequisite for satisfaction of both patients and the medical staff, which leads to efficiency of the whole health care system.
2. Literature Review
3. Methodology
3.1. Problem Definition
3.2. Binary Programming Model
d | Morning shift |
n | Night shift |
l | The set of shifts; l = d, n |
i | Week, i = 1, 2, 3, 4 |
j | The set of crews |
J | Total number of crews |
k | Day of the week, k = 1, 2, 3, 4, 5, 6, 7 |
Skl | The number of ambulance crew required to be assigned to shift l on day k |
Mmin and Mmax | minimal and maximal number of shifts per crew per period |
Nmin and Nmax | minimal and maximal number of night shifts per crew per period |
Wmin and Wmax | minimal and maximal number of shifts per crew per week |
Nmin and Nmax | minimal and maximal number of night shifts per crew per period |
Wmin and Wmax | minimal and maximal number of shifts per crew per week |
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaczor, S.; Kryvinska, N. It is all about services-fundamentals, drivers, and business models. J. Serv. Sci. Res. 2013, 5, 125–154. [Google Scholar] [CrossRef]
- Calkins, M.M.; Isaksen, B.T.; Stubbs, A.B.; Yost, G.M.; Fenske, A.R. Impacts of extreme heat on emergency medical service calls in King County, Washington, 2007–2012: Relative risk and time series analyses of basic and advanced life support. Environ. Health 2016, 15, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, K.; Morgans, A.; Smith, K.; Hodgkinson, A.; Becker, G.; Stoelwinder, J. A novel approach for managing the growing demand for ambulance services by low-acuity patients. Aust. Health Rev. 2015, 40, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Veser, A.; Sieber, F.; Groß, S.; Prückner, S. The demographic impact on the demand for emergency medical services in the urban and rural regions of Bavaria, 2012–2032. J. Public Health 2015, 23, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B. Ambulance Services—Leadership and Management Perspectives, Chapter: Management of Emergency Demand; Springer International Publishing: New York, NY, USA, 2015; pp. 43–50. [Google Scholar] [CrossRef]
- Popesko, B.; Papadaki, Š.; Novák, P. Cost and Reimbursement Analysis of Selected Hospital Diagnoses via Activity-Based Costing. Em Ekon. A Manag. 2015, 18, 50–61. [Google Scholar] [CrossRef]
- Ivlev, I.; Kneppo, P.; Bartak, M. Method for selecting expert groups and determining the importance of experts’ judgments for the purpose of managerial decision-making tasks in health system. Em Ekon. A Manag. 2015, 18, 57–72. [Google Scholar] [CrossRef]
- Ozcan, Y.A. Quantitative Methods in Health Care Management: Techniques and Applications; John Wiley & Sons Inc.: San Francisco, CA, USA, 2009. [Google Scholar]
- Heder, M.; Szabo, S.; Dajnoki, K. Effect of Labour Market Changes on HR Functions. Ann. Fac. Econ. Subot. 2018, 54, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Teow, K.L. Practical operations research applications for health care managers. Ann. Acad. Med. Singap. 2009, 38, 564–566. [Google Scholar]
- Keclíková, K.; Briš, P. Risk Management and Internal Audit in Integrated Process Management of Hospitals. Em Ekon. A Manag. 2011, 4, 55–66. [Google Scholar]
- Bruckner, A.T.; Schefflr, M.R.; Shen, G.; Yoon, J.; Chisholm, D.; Morris, J.; Fulton, D.B.; Dal Poz, R.M.; Saxena, S. The mental health workforce gap in low- and middle-income countries: A needs-based approach. Bull. World Health Organ. 2011, 89, 184–194. [Google Scholar] [CrossRef]
- Hall, W.R. Patient Flow: Reducing Delay in Health Care Delivery; Springer Science+Business Media: New York, NY, USA, 2006. [Google Scholar]
- Sainfort, F.; Blake, J.; Gupta, D.; Radin, R.L. WTEC Panel Report on Operations Research for Healthcare Delivery Systems; World Technology Evaluation Center, Inc.: Baltimore, MD, USA, 2005; Available online: http://wtec.org/or/report/OR-report.pdf (accessed on 2 May 2016).
- Grubor, A.; Berber, N.; Aleksić, M.; Bjekić, R. The influence of corporate social responsibility on organizational performance: A research in AP Vojvodina. Ann. Fac. Econ. Subot. 2019, 56, 3–13. [Google Scholar] [CrossRef]
- Kryvinska, N. Building consistent formal specification for the service enterprise agility foundation. J. Serv. Sci. Res. 2012, 4, 235–269. [Google Scholar] [CrossRef]
- Marcikic, A.; Radovanov, B. Using Erlang B Model to Determine Staffing Level in Health care organizations. In Proceedings of the XLI Symposium on Operational Research, SYM-OP-IS 2014, Divcibare, Serbia, 16–19 September 2014; pp. 330–334. Available online: http://symopis.sf.bg.ac.rs/downloads/SYMOPIS_2014-Zbornik_radova-elektronsko_izdanje.pdf (accessed on 2 May 2016).
- Li, Y.; Kozan, E. Rostering Ambulance Services. In Proceedings of the Asia Pacific Industrial Engineering and Management Society Conference, Kitakyushu, Japan, 14–16 December 2009; pp. 795–801. Available online: http://eprints.qut.edu.au/29823/1/c29823.pdf (accessed on 2 May 2016).
- Rajagopalan, H.K.; Saydam, C.; Sharer, E.; Setzler, H. Ambulance Deployment and Shift Scheduling: An Integrated Approach. J. Serv. Sci. Manag. 2011, 4, 66–78. [Google Scholar] [CrossRef]
- Cantwell, K.; Morgans, A.; Smith, K.; Livingston, M.; Spelman, T.; Dietze, P. Time of Day and Day of Week Trends in EMS Demand. Prehospital Emerg. Care 2015, 19, 425–431. [Google Scholar] [CrossRef]
- Matteson, D.S.; McLean, M.W.; Woodard, D.B.; Henderson, S.G. Forecasting emergency medical service call arrival rates. Ann. Appl. Stat. 2011, 5, 1379–1406. [Google Scholar] [CrossRef]
- Baker, J.R.; Fitzpatrick, K.E. Determination of an optimal forecast model for ambulance demand using goal programming. J. Oper. Res. Soc. 1986, 37, 1047–1059. [Google Scholar] [CrossRef]
- Channouf, N.; L’Ecuyer, P.; Ingolfsson, A.; Avramidis, N. The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. Health Caremanagement Sci. 2007, 10, 25–45. [Google Scholar] [CrossRef]
- Zuidhof, G.M. Capacity Planning for Ambulance Services: Statistical Analysis, Forecasting and Staffing. Master Thesis, Vrije Universiteit Amsterdam, Centrum Wiskunde en Informatica Amsterdam, Amsterdam, The Netherlands, 2016. Available online: https://www.few.vu.nl/nl/Images/stageverslag-zuidhof_tcm243-210831.pdf (accessed on 2 May 2016).
- Setzler, H.; Saydam, C.; Park, S. EMS call volume predictions: A comparative study. Comput. Oper. Res. 2009, 36, 1843–1851. [Google Scholar] [CrossRef]
- Marcikić, A.; Pejanović, R.; Sedlak, O.; Radovanov, B.; Ćirić, Z. Quantitative Analysis of the Demand for Healthcare Services. Int. J. Manag. 2016, 21, 55–67. [Google Scholar] [CrossRef]
- Ernst, A.T.; Jiang, H.; Krishnamoorthy, M.; Sier, D. Staff scheduling and rostering: A review of applications, methods and models. Eur. J. Oper. Res. 2004, 153, 3–27. [Google Scholar] [CrossRef]
- Ciric, Z.; Stojic, D.; Sedlak, O. Multicriteria HR allocation based on hesitant fuzzy sets and possibilistic programming. Acta Polytech. Hung. 2015, 12, 185–197. [Google Scholar] [CrossRef]
- Elkhuizen, S.G.; Bor, G.; Smeenk, M.; Klazinga, N.S.; Bakker, P.J.M. Capacity management of nursing staff as a vehicle for organizational improvement. BMC Health Serv. Res. 2007, 7, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berber, N.; Djordjevic, B.; Milanovic, S. Electronic Human Resource Management (e-HRM): A New Concept for Digital Age. Strateg. Manag. Int. J. Strateg. Manag. Decis. Support Syst. Strateg. Manag. 2018, 23, 022–032. [Google Scholar]
- Su, B.; Thierry, G.H.; Chen, Q.; Zhao, Q. The New Cooperative Medical Scheme and Self-Employment in Rural China. Sustainability 2017, 9, 304. [Google Scholar] [CrossRef] [Green Version]
- Borgonovi, E.; Adinolfi, P.; Palumbo, R.; Piscopo, G. Framing the Shades of Sustainability in Health Care: Pitfalls and Perspectives from Western EU Countries. Sustainability 2018, 10, 4439. [Google Scholar] [CrossRef] [Green Version]
- Brahma, P.K. Application of Queuing Theory in Hospital Manpower Planning; Lambert Academic Publishing: Saarbrucken, Germany, 2012. [Google Scholar]
- Yankovic, N.; Green, V.L. Indentifying good nursing levels: A queuing approach. Oper. Res. 2011, 59, 942–955. [Google Scholar] [CrossRef]
- Bekker, R.; DeBruin, A.M. Time-dependent analysis for refused admissions in clinical wards. Ann. Oper. Res. 2010, 178, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Liang, X.; Sun, C. Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows. Sustainability 2017, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- DeBruin, A.M.; Bekker, R.; van Zanten, L.; Koole, G.M. Dimensioning hospital wards using the Erlang loss model. Ann. Oper. Res. 2010, 178, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, M.; Henderson, S.G.; Topaloglu, H. Erlang loss models for the static deployment of ambulances. Health Care Manag. Sci. 2009, 12, 67–79. [Google Scholar] [CrossRef]
- Kwak, N.K.; Li, C. A linear goal programming model for human resource allocation in a health-care organization. J. Med. Syst. 1997, 21, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S.; Nagalakshmi, G.; Kumaraguru, S. A Shift Sequence for Nurse Scheduling Using Linear Programming Problem. IOSR J. Nurs. Health Sci. 2014, 3, 24–28. [Google Scholar] [CrossRef]
- Saaty, T.L.; Peniwatib, K.; Shanga, J.S. The Analytic Hierarchy Process and Human Resource Allocation: Half the Story. Math. Comput. Model. 2007, 46, 1041–1053. [Google Scholar] [CrossRef]
- Jasim, H. Relief Staff Rostering for the St John Ambulance Service. In Proceedings of the Operations Research Society of New Zealand Conference, Christchurch, New Zealand, 30 November–1 December 2001; Available online: http://orsnz.org.nz/conf36/papers/Jasim.pdf (accessed on 2 May 2016).
- Filho, C.F.F.C.; Rocha, D.A.R.; Costa, M.G.F.; Pereira, W.C.A. Using Constraint Satisfaction Problem Approach to Solve Human Resource Allocation Problems in Cooperative Health Services. Expert Syst. Appl. 2012, 39, 385–394. [Google Scholar] [CrossRef]
- Ghanes, K.; Wargon, M.; Jouini, O.; Jemai, Z.; Diakogiannis, A.; Hellmann, R.; Thomas, V.; Koole, G. Simulation-based optimization of staffing levels in an emergency department. Simul. Trans. Soc. Modeling Simul. Int. 2015, 91, 942–953. [Google Scholar] [CrossRef] [Green Version]
- DeRienzo, C.M.; Shaw, R.J.; Meanor, P.; Lada, E.; Ferranti, J.; Tanaka, D. A discrete event simulation tool to support and predict hospital and clinic staffing. Health Inform. J. 2016, 23, 124–133. [Google Scholar] [CrossRef]
- Trilling, L.; Guinet, A.; Le Magny, D. Nurse scheduling using integer linear programming and constraint programming. In Proceedings of the volume from the 12th IFAC International Symposium, Saint-Etienne, France, 17–19 May 2006; pp. 651–656. Available online: https://hal.archives-ouvertes.fr/hal-00173072/document (accessed on 2 May 2016).
- Bruke, E.K.; Causmaecker, P.D.; Berghe, G.V.; Landeghem, H.V. The state of the art of nurse rostering. J. Sched. 2004, 7, 441–499. [Google Scholar] [CrossRef]
- Felici, G.; Gentile, C. A polyhedral approach for the staff rostering problem. Manag. Sci. 2004, 50, 381–393. [Google Scholar] [CrossRef]
Skl Weekdays Morning Shift | Skl Weekdays Night Shift | Skl Weekend Morning Shift | Skl Weekend Night Shift | Mmin | Mmax | Nmin | Nmax | Wmin | Wmax |
---|---|---|---|---|---|---|---|---|---|
2 | 2 | 4 | 3 | 10 | 11 | 4 | 5 | 2 | 4 |
Ambulance Crews | Schedule | |
---|---|---|
Total Number of Shifts | Total Number of Night Shifts | |
1 | 11 | 5 |
2 | 11 | 5 |
3 | 11 | 5 |
4 | 10 | 4 |
5 | 10 | 5 |
6 | 10 | 5 |
7 | 11 | 5 |
8 | 11 | 5 |
9 | 11 | 5 |
10 | 10 | 5 |
11 | 10 | 6 |
12 | 10 | 5 |
13 | 10 | 4 |
Total | 136 | 64 |
Ambulance Crews | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d | n | d | n | d | n | d | n | d | n | d | n | d | n | |
1 | 1 | 1 | 1 | |||||||||||
2 | 1 | 1 | 1 | |||||||||||
3 | 1 | 1 | 1 | 1 | ||||||||||
4 | 1 | 1 | ||||||||||||
5 | 1 | 1 | ||||||||||||
6 | 1 | 1 | ||||||||||||
7 | 1 | 1 | 1 | |||||||||||
8 | 1 | 1 | 1 | 1 | ||||||||||
9 | 1 | 1 | ||||||||||||
10 | 1 | 1 | ||||||||||||
11 | 1 | 1 | 1 | |||||||||||
12 | 1 | 1 | ||||||||||||
13 | 1 | 1 | ||||||||||||
Total | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 3 | 4 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvat, A.M.; Dudic, B.; Radovanov, B.; Melovic, B.; Sedlak, O.; Davidekova, M. Binary Programming Model for Rostering Ambulance Crew-Relevance for the Management and Business. Mathematics 2021, 9, 64. https://doi.org/10.3390/math9010064
Horvat AM, Dudic B, Radovanov B, Melovic B, Sedlak O, Davidekova M. Binary Programming Model for Rostering Ambulance Crew-Relevance for the Management and Business. Mathematics. 2021; 9(1):64. https://doi.org/10.3390/math9010064
Chicago/Turabian StyleHorvat, Aleksandra Marcikic, Branislav Dudic, Boris Radovanov, Boban Melovic, Otilija Sedlak, and Monika Davidekova. 2021. "Binary Programming Model for Rostering Ambulance Crew-Relevance for the Management and Business" Mathematics 9, no. 1: 64. https://doi.org/10.3390/math9010064
APA StyleHorvat, A. M., Dudic, B., Radovanov, B., Melovic, B., Sedlak, O., & Davidekova, M. (2021). Binary Programming Model for Rostering Ambulance Crew-Relevance for the Management and Business. Mathematics, 9(1), 64. https://doi.org/10.3390/math9010064