Application of Delaunay Triangulation and Catalan Objects in Steganography
Abstract
:1. Introduction
2. Related Work
3. Proposed Steganographic Method
3.1. Voronoi–Delaunay Triangulation
3.2. Catalan Numbers and Catalan Objects
3.3. Stack Permutation Method
- If the current bit in the key is “1”, the push operation is needed, and the number of occurrences of this bit in the record is entered on the left;
- If the bit value “0” appears, the pop operation is needed, and the bit is ejected from the stack.
3.4. Steganographic Method
3.4.1. Example of the Steganographic Method with Details
Algorithm 1 Delaunay triangulation of binary presented picture |
1. Require: Randomly selected image (converted in binary represent) and array (bit of secret message). 2. Make initial set of triangles containing . 3. for r = 1 to N (length of array) do (Put in ) 4. if () or () (Dependency which is a bit (0 or 1) of secret message in array ) 5. then 6. Find , which contains 7. Put the coordinates into array . 8. if in the interior of the 9. then 10. LegalizeEdge () 11. LegalizeEdge () 12. LegalizeEdge () 13. else ( on an edge of , say the edge ) 14. LegalizeEdge () 15. LegalizeEdge () 16. LegalizeEdge () 17. LegalizeEdge () 18. else 19. Call random() to find pixel which contains “0” or “1” 20. (Dependency which is a bit (0 or 1) of secret message in array 21. goto() line 4. 22. Discard with all their incident edges from . 23. Output: (triangulated binary presented picture or subset triangles of the set ). |
Algorithm 2 Delaunay triangulated encryption of binary presented picture () |
1. Require: Triangulation resulting from Algorithm 1 and array . 2. for r = 1 to N (length of array) do (Access in the array ) 3. Convert coordinates of in binary record 4. Call Stack permutation method based on chosen Catalan key. 5. Convert in the decimal record (after permutation, bit becomes 6. Put coordinates of in array R_k. 7. Make the initial set of triangles containing . 8. for s = 1 to N (length of array) do (Put in ) 9. Find , which contains 10. Access coordinates of in array 11. if in the interior of the 12. then 13. LegalizeEdge () 14. LegalizeEdge () 15. LegalizeEdge () 16. else ( on an edge of , say the edge 17. LegalizeEdge () 18. LegalizeEdge () 19. LegalizeEdge () 20. LegalizeEdge () 21. Convert array from decimal value to Base64 code. 22. Discard with all their incident edges from . 23. Output: (triangulated binary presented picture or subset triangles of the set ). |
- WCA9IDIwLCBZPSAxNjQsICBYID0gMjMyLCBZPSA1NiwgIFggPSAyMjEsIFk9IDEyNCwgIFg PSA0OCwgWT0gMTk5LCAgWCA9IDc5LCBZPSAxNTcsICBYID0gMjAs
- IFk9IDIzMCwgIFggPSAyMjAsIFk9IDYyLCAgWCA9IDEwNywgWT0gMTY5LCAgWCA9IDIzLCBZPSAxNCwgIFggPSA2MywgWT0gMTI0LCAg...wgWT0gMjc0LCBYID0gNTU4LCBZPSAxNTksIFggPSA1OTYsIFk9IDMxNywgWCA9IDc2MSwgWT0gNDMxLCBYID0gNTY5LCBZPSAzNDYsIFggPSA1NTcsIFk9IDMxNSwgWCA9IDcxNiwgWT0gNDUyLCBYID0gNTMzLCBZPSAxNCwgWCA9IDY1OSwgWT0gMzg3.
3.4.2. Algorithm Complexity and Maximum Length of the Secret Message in Characters
4. Steganalysis and Security Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Zhang, Y.; Xie, E.Y. When an attacker meets a cipher-image in 2018: A year in review. J. Inf. Secur. Appl. 2019, 48, 102361. [Google Scholar] [CrossRef] [Green Version]
- Saračević, M.; Jukić, S.; Hasanović, A. A Steganography Method Based on Decomposition of the Catalan Numbers. In Digital Media Steganography—Principles, Algorithms, Advances; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128194386. [Google Scholar]
- Saračević, M.; Korićanin, E.; Biševac, E. Encryption based on Ballot, Stack permutations and Balanced Parentheses using Catalan-keys. J. Inf. Technol. Appl. 2017, 7, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Saračević, M.; Selimi, A.; Selimović, F. Generation of cryptographic keys with algorithm of polygon triangulation and Catalan numbers. Comput. Sci. 2018, 19, 243–256. [Google Scholar] [CrossRef]
- Saračević, M.; Adamović, S.; Biševac, E. Applications of Catalan numbers and Lattice Path combinatorial problem in cryptography. Acta Polytech. Hung. J. Appl. Sci. 2018, 15, 91–110. [Google Scholar]
- Saračević, M.; Hadžic, M.; Korićanin, E. Generating Catalan-keys based on dynamic programming and their application in steganography. Int. J. Ind. Eng. Manag. 2017, 8, 219–227. [Google Scholar]
- Saračević, M.; Adamović, S.; Miškovic, V.; Maček, N.; Šarac, M. A novel approach to steganography based on the properties of Catalan numbers and Dyck words. Future Gener. Comput. Syst. 2019, 100, 186–197. [Google Scholar] [CrossRef]
- Pund-Dange, S.; Desai, C.G. Data Hiding Technique using Catalan-Lucas Number Sequence. Indian J. Sci. Technol. 2017, 10, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Aroukatos, N.; Manes, K.; Zimeras, S.; Georgiakodis, F. Techniques in Image Steganography using Famous Number Sequences. Int. J. Comput. Technol. 2013, 11, 2321–2329. [Google Scholar] [CrossRef] [Green Version]
- Bhaskari, D.L.; Avadhani, P.S.; Damodaram, A. Combinatorial approach for information hiding using steganography and godelization techniques. Int. J. Syst. Cybern. Inform. 2007, 10, 21–24. [Google Scholar]
- Gutierrez-Cardenas, J.M. Secret key steganography with message obfuscation by pseudo-random number generators. In Proceedings of the 38th IEEE International Computer Software and Applications Conference Workshops, Vasteras, Sweden, 21–25 July 2014. [Google Scholar]
- Sahu, A.K.; Swain, G. An Optimal Information Hiding Approach Based on Pixel Value Differencing and Modulus Function. Wirel. Pers. Commun. 2019, 108, 159–174. [Google Scholar] [CrossRef]
- Sahu, A.K.; Swain, G. A novel n-rightmost bit replacement image steganography technique. 3D Res. 2019, 10, 2. [Google Scholar] [CrossRef]
- Sahu, A.K.; Swain, G. Pixel Overlapping Image Steganography using PVD and Modulus Function. 3D Res. 2018, 9, 40. [Google Scholar] [CrossRef]
- Swain, G.; Sahu, A.K. A Novel Multi Stego-image based Data Hiding Method for Gray Scale Image. Pertanika J. Sci. Technol. 2019, 27, 753–768. [Google Scholar]
- Sahu, A.K.; Swain, G.; Babu, E. Digital image steganography using Bit Flipping. Cybern. Inf. Technol. 2018, 18, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Yu, Y.; Li, B.; Li, Z.; Qin, Z. A New Payload Partition Strategy in Color Image Steganography. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 685–696. [Google Scholar] [CrossRef]
- De Berg, M.; Kreveld, M.; Overmars, M.; Schwarzkopf, O. Computational Geometry Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Koshy, T. Catalan Numbers with Applications; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Fridrich, J.; Goljan, M.; Du, R. Reliable detection of LSB steganography in color and grayscale images. In Proceedings of the 2001 Workshop on Multimedia and Security: New Challenges, Ottawa, ON, USA, 30 September–5 October 2001; pp. 27–30. [Google Scholar]
- Liao, X.; Yin, J.; Chen, M.; Qin, Z. Adaptive Payload Distribution in Multiple Images Steganography Based on Image Texture Features. IEEE Trans. Dependable Secur. Comput. 2020. [Google Scholar] [CrossRef]
- Liao, X.; Guo, S.; Yin, J.; Wang, H.; Li, X.; Sangaiah, A.K. New cubic reference table based image steganography. Multimed. Tools Appl. 2018, 77, 10033–10050. [Google Scholar] [CrossRef]
Original Image | Binary Image Record | Secret Message | Binary Secret Message Record S | Delaunay Triangulation of Binary Secret Message Record (Array R) | Catalan Key | Encrypted Delaunay Triangulation Using Stack Permutation (Array Rk) | Array Rk in Base64 Code Form |
---|---|---|---|---|---|---|---|
011001000110000101110100011000010011101001101001011011010110000101100111011001010010111101101010011100000011 | E | 0 | vertex 1: x = 68, y = 44 | 281609810 = 10101011111000011000102 | vertex 1: x = 20, y = 164 | WCA9IDIwLCBZPSAxNjQsICBYID0gMjMyLCBZPSA1NiwgIFggPSAyMjEsIFk9IDEyNCwgIFggPSA0OCwgWT0gMTk5LCAgWCA9IDc5LCBZPSAxNTcsICBYI | |
1 | vertex 2: x = 58, y = 98 | vertex 2: x = 232, y = 56 | |||||
0 | vertex 3: x = 95, y = 118 | vertex 3: x = 221, y = 124 | |||||
0 | vertex 4: x = 96, y = 157 | vertex 4: x = 48, y = 199 | |||||
0 | vertex 5: x = 151, y = 79 | vertex 5: x = 79, y = 157 | |||||
1 | vertex 6: x = 68, y = 188 | vertex 6: x = 20, y = 230 | |||||
0 | vertex 7: x = 94, y = 230 | vertex 7: x = 220, y = 62 | |||||
1 | vertex 8: x = 179, y = 43 | vertex 8: x = 107, y = 169 | |||||
N | 0 | vertex 9: x = 197, y = 134 | vertex 9: x = 23, y = 14 | ||||
1 | vertex 10: x = 231, y = 118 | vertex 10: x = 63, y = 124 | |||||
0 | vertex 11: x = 195, y = 187 | vertex 11: x = 27, y = 235 | |||||
0 | vertex 12: x = 178, y = 230 | vertex 12: x = 106, y = 62 | |||||
1 | vertex 13: x = 159, y = 261 | vertex 13: x = 207, y = 261 | |||||
1 | vertex 14: x = 123, y = 299 | vertex 14: x = 249, y = 425 | |||||
1 | vertex 15: x = 87, y = 321 | vertex 15: x = 93, y = 273 | |||||
0 | vertex 16: x = 150, y = 337 | vertex 16: x = 78, y = 337 |
T | Secret Message Length (in Bytes) | Image Size (Resolution) | DTM | DCM [2] | LSB [20] |
---|---|---|---|---|---|
1 | 500 | 800 × 600 | 0.36 | 0.33 | 0.27 |
2 | 1000 | 800 × 600 | 0.47 | 0.41 | 0.38 |
3 | 1500 | 800 × 600 | 0.89 | 0.79 | 0.62 |
4 | 3000 | 1280 × 960 | 1.12 | 1.15 | 0.94 |
5 | 5000 | 1280 × 960 | 2.51 | 2.69 | 1.74 |
6 | 10,000 | 1280 × 960 | 4.68 | 5.17 | 3.51 |
7 | 20,000 | 1280 × 1024 | 8.87 | 9.97 | 8.74 |
8 | 50,000 | 1280 × 1024 | 10.17 | 12.47 | 12.17 |
9 | 100,000 | 1280 × 1024 | 14.89 | 16.74 | 15.14 |
10 | 150,000 | 1920 × 1080 | 17.85 | 19.11 | 18.55 |
11 | 200,000 | 1920 × 1080 | 22.51 | 23.08 | 22.99 |
12 | 300,000 | 1920 × 1080 | 24.78 | 26.44 | 25.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selimović, F.; Stanimirović, P.; Saračević, M.; Krtolica, P. Application of Delaunay Triangulation and Catalan Objects in Steganography. Mathematics 2021, 9, 1172. https://doi.org/10.3390/math9111172
Selimović F, Stanimirović P, Saračević M, Krtolica P. Application of Delaunay Triangulation and Catalan Objects in Steganography. Mathematics. 2021; 9(11):1172. https://doi.org/10.3390/math9111172
Chicago/Turabian StyleSelimović, Faruk, Predrag Stanimirović, Muzafer Saračević, and Predrag Krtolica. 2021. "Application of Delaunay Triangulation and Catalan Objects in Steganography" Mathematics 9, no. 11: 1172. https://doi.org/10.3390/math9111172
APA StyleSelimović, F., Stanimirović, P., Saračević, M., & Krtolica, P. (2021). Application of Delaunay Triangulation and Catalan Objects in Steganography. Mathematics, 9(11), 1172. https://doi.org/10.3390/math9111172