Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order
Abstract
:1. Introduction
2. Oscillation Criteria of (4) when
3. Oscillation Criteria of (4) when
4. Discussions
- (1)
- (2)
- The results in this paper are correct for various species of time scales, e.g., , , with , , and , etc. (see [14]).
- (3)
- (4)
- Regarding dynamic equations on time scales, the oscillation criteria here are an important improvement compared to the literature outcomes. In particular, our results improve those reported in [28]; see the following details. Let . By dint of
- (5)
- It would be of interest to establish Hille-type oscillation criteria of (4) assuming thatIt would be nice to find work devoted to numerical analysis and real-world applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains a unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M. Quadratic functionals for second order matrix equations on time scales. Nonlinear Anal. 1998, 33, 675–692. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M. Basic calculus on time scales and some of its applications. Results Math. 1999, 35, 3–22. [Google Scholar] [CrossRef]
- Bel, G.; Zilman, A.; Kolomeisky, A.B. Different time scales in dynamic systems with multiple outcomes. J. Chem. Phys. 2020, 153, 054107. [Google Scholar] [CrossRef] [PubMed]
- Bramburger, J.J.; Dylewsky, D.; Nathan Kutz, J. Sparse identification of slow time scale dynamics. Phys. Rev. 2020, E102, 022204. [Google Scholar]
- Akhmet, M.U.; Turan, M. Differential equations on variable time scales. Nonlinear Anal. 2009, 70, 1175–1192. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Turan, M. The differential equations on time scales through impulsive differential equations. Nonlinear Anal. 2006, 65, 2043–2060. [Google Scholar] [CrossRef]
- Laksmikantham, V.; Sivasundaram, S.; Kaymakcalan, B. Dynamical systems on measure chains. In Mathematics and Its Applications; Kluwer Academic: Dordrecht, The Netherlands, 1996; Volume 370. [Google Scholar]
- Nwaeze, E.R.; Torres, D.F.M. Chain rules and inequalities for the BHT fractional calculus on arbitrary time scales. Arab. J. Math. 2017, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Li, T. On conformable delta fractional calculus on time scales. J. Math. Comput. Sci. 2016, 16, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Ulness, D.J. Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 2015, 10, 109–137. [Google Scholar]
- Malinowska, A.B.; Martins, N.; Torres, D.F.M. Transversality conditions for infinite horizon variational problems on time scales. Optim. Lett. 2011, 5, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B.; Torres, D.F.M. Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Appl. Math. Comput. 2010, 217, 1158–1162. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext, Springer: Berlin, Germany, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Došly, O.; Řehák, P. Half-Linear Differential Equations; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Wong, J.S. Second order oscillation with retarded arguments. In Ordinary Differential Equations; Academic Press: New York, NY, USA; London, UK, 1972; pp. 581–596. [Google Scholar]
- Erbe, L. Oscillation criteria for second order quasilinear delay equations. Can. Math. Bull. 1973, 16, 49–56. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Quasilinear Dynam. Sys. Th. 2009, 9, 51–68. [Google Scholar]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for sublinear half-linear delay dynamic equations on time scales. Int. J. Differ. Equ. 2008, 3, 227–245. [Google Scholar]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Hassan, T.S.; Agarwal, R.P.; Mohammed, W. Oscillation criteria for third-order functional half-linear dynamic equations. Adv. Differ. Equ. 2017, 2017, 111. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Abdel Menaem, A. Improved oscillation results for functional quasilinear dynamic equations of second order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order quasilinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Oscillation theorems for quasilinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order quasilinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved Oscillation Criteria for 2nd-Order Neutral Differential Equations with Distributed Deviating Arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Nehari, Z. Oscillation criteria for second-order linear differential equations. Trans. Am. Math. Soc. 1957, 85, 428–445. [Google Scholar] [CrossRef]
- Ohriska, J. Oscillation of second order delay and ordinary differential equations. Czech. Math. J. 1984, 34, 107–112. [Google Scholar] [CrossRef]
- Řehak, P. New results on critical oscillation constants depending on a graininess. Dyn. Syst. Appl. 2010, 19, 271–288. [Google Scholar]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Wintner, A. On the nonexistence of conjugate points. Am. J. Math. 1951, 73, 368–380. [Google Scholar] [CrossRef]
- Sun, Y.; Hassan, T.S. Oscillation criteria for functional dynamic equations with nonlinearities given by Riemann-Stieltjes integral. Abstr. Appl. Anal. 2014, 2014, 697526. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math. 2005, 177, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Properties of higher-order half-linear functional differential equations with noncanonical operators. Adv. Differ. Equ. 2013, 2013, 54. [Google Scholar] [CrossRef] [Green Version]
- Shevelo, N.V. Oscillation of Solutions of Differential Equations with Retarded Argument; Naukova Dumka: Kyiv, Ukrania, 1978. [Google Scholar]
- Agarwal, R.P.; Berezansky, L.; Braverman, E.; Domoshnitsky, A. Nonoscillation Theory of Functional Differential Equations with Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- Baculikova, B. Oscillatory behavior o the second order functional differential equations. Appl. Math. Lett. 2017, 72, 35–41. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators. Appl. Math. Lett. 2011, 24, 1647–1653. [Google Scholar]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order. Mathematics 2021, 9, 1191. https://doi.org/10.3390/math9111191
Hassan TS, El-Nabulsi RA, Abdel Menaem A. Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order. Mathematics. 2021; 9(11):1191. https://doi.org/10.3390/math9111191
Chicago/Turabian StyleHassan, Taher S., Rami Ahmad El-Nabulsi, and Amir Abdel Menaem. 2021. "Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order" Mathematics 9, no. 11: 1191. https://doi.org/10.3390/math9111191
APA StyleHassan, T. S., El-Nabulsi, R. A., & Abdel Menaem, A. (2021). Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order. Mathematics, 9(11), 1191. https://doi.org/10.3390/math9111191