On the Approximation by Balázs–Szabados Operators
Abstract
:1. Introduction
2. Approximation on Compact Intervals of Super-Exponential Functions
3. Estimation of the Rate of Uniform Approximation
4. Weighted Approximation in Polynomial Weight Spaces
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weierstrass, K. Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsber. Akad. Berlin 1885, 633–639, 789–805. (In German) [Google Scholar]
- Weierstrass, K. Sur la possibilité d’une représentation analytique des fonctions dites arbitraires d’une variable réelle. J. Math. Pures Appl. 1886, tome 2, 105–138. (In French) [Google Scholar]
- Korovkin, P.P. Linear Operators and Approximation Theory; State Publishing, Physical and Mathematical Literature: Moscow, Russia, 1959. (In Russian) [Google Scholar]
- Korovkin, P.P. Linear Operators and Approximation Theory; Russian Monographs and Texts on Advanced Mathematics and Physics; Hindustan Publishing Corporation: Delhi, India, 1960; Volume III. [Google Scholar]
- Lorentz, G.G. Approximation of Functions; Holt, Rinhart and Winston, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Balázs, K. Approximation by Bernstein type rational functions. Acta Math. Hungar. 1975, 26, 123–134. [Google Scholar] [CrossRef]
- Balázs, C.; Szabados, J. Approximation by Bernstein type rational functions II. Acta Math. Hungar. 1982, 40, 331–337. [Google Scholar] [CrossRef]
- Totik, V. Saturation for Bernstein type rational functions. Acta Math. Hungar. 1984, 43, 219–250. [Google Scholar] [CrossRef]
- Balázs, K. Approximation by Bernstein type rational functions on the real axis. Acta Math. Hungar. 1985, 46, 195–204. [Google Scholar] [CrossRef]
- della Vecchia, B. On some preservation and asymptotic relations of a rational operator. Facta Univ. Ser. Math. Inform. 1989, 4, 57–62. [Google Scholar]
- Ispir, N. Approximation by modified Bernstein-Balazs type rational functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 2000, 49, 87–93. [Google Scholar] [CrossRef]
- Abel, U.; della Vecchia, B. Asymptotic approximation by the operators of K. Balázs and Szabados. Acta Sci. Math. 2000, 66, 137–145. [Google Scholar]
- Agratini, O. An approximation process of Kantorovich type. Miskolc Math. Notes 2001, 2, 3–10. [Google Scholar] [CrossRef]
- Atakut, C. On approximation by Balazs-Stancu type rational functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 2001, 50, 95–105. [Google Scholar]
- Ispir, N.; Atakut, C. Approximation by Balazs type rational functions in weighted spaces. Hadronic J. 2001, 24, 301–315. [Google Scholar]
- Agratini, O. On approximation properties of Balázs-Szabados operators and their Kantorovich extension. Korean J. Comput. Appl. Math. 2002, 9, 361–372. [Google Scholar] [CrossRef]
- Dogru, O. On Bleimann, Butzer and Hahn type generalization of Balázs operators. Stud. Univ. Babeş-Bolyai Math. 2002, 47, 37–45. [Google Scholar]
- Ispir, N.; Atakut, C. Approximation by generalized Balazs type rational functions. Int. J. Comput. Numer. Anal. Appl. 2003, 4, 297–316. [Google Scholar]
- Atakut, C.; Ispir, N. On Bernstein type rational functions of two variables. Math. Slovaca 2004, 54, 291–301. [Google Scholar] [CrossRef]
- Gupta, V.; Lupaş, A. On the rate of approximation for the Bézier variant of Kantorovich-Balazs operators. Gen. Math. 2004, 12, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Ispir, N. On the Bézier variant of generalized Kantorovich type Balazs operators. Appl. Math. Lett. 2005, 18, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Dogru, O. On statistical approximation properties of Stancu type bivariate generalization of q-Balázs-Szabados operators. In Proceedings of the International Conference on Numerical Analysis and Approximation Theory NAAT 2006, Cluj-Napoca, Romania, 5–8 July 2006; Casa Cărţii de Ştiinţă: Cluj-Napoca, Romania, 2006; pp. 179–194. [Google Scholar]
- Gupta, V.; Ispir, N. On the Kantorovich variant of generalized Bernstein type rational functions. Demonstr. Math. 2006, 39, 117–130. [Google Scholar] [CrossRef]
- Gupta, V.; Zeng, X.M. Rate of approximation for the Bézier variant of Balazs-Kantorovich operators. Math. Slovaca 2007, 57, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V. Rate of approximation for the Balazs-Kantorovich-Bézier operators. Appl. Math. Comput. 2008, 199, 823–827. [Google Scholar] [CrossRef]
- Gal, S. Approximation by Complex Bernstein and Convolution Type Operators; Series on Concrete and Applicable Mathematics: Volume 8; World Scientific Publishing Co Pte Ltd.: Singapore, 2009; pp. 139–148. [Google Scholar]
- Atakut, C. On derivatives of Bernstein type rational functions of two variables. Appl. Math. Comput. 2011, 218, 673–677. [Google Scholar] [CrossRef]
- Ispir, N.; Özkan, E.Y. Approximation properties of complex q-Balázs-Szabados operators in compact disks. J. Inequal. Appl. 2013, 2013, 361. [Google Scholar] [CrossRef] [Green Version]
- Özkan, E.Y. Approximation properties of bivariate complex q-Balázs-Szabados operators of tensor product kind. J. Inequal. Appl. 2014, 2014, 20. [Google Scholar] [CrossRef] [Green Version]
- Özkan, E.Y. Statistical Approximation Properties of q-Balázs-Szabados-Stancu Operators. Filomat 2014, 28, 1943–1952. [Google Scholar] [CrossRef] [Green Version]
- Atakut, C.; Büyükyazici, I.; Serenbay, S.K. Approximation properties of Baskakov-Balazs type operators for functions of two variables. Miskolc Math. Notes 2015, 16, 667–678. [Google Scholar]
- Deo, N.; Bhardwaj, N. A Better Error Estimation on Balázs Operators. Lobachevskii J. Math. 2015, 36, 9–14. [Google Scholar] [CrossRef]
- Abel, U.; Agratini, O. On the variation detracting property of operators of Balázs and Szabados. Acta Math. Hungar. 2016, 150, 383–395. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Approximation Properties of the q-Balázs-Szabados Complex Operators in the Case q ≥ 1. Comput. Methods Funct. Theory 2016, 16, 567–583. [Google Scholar] [CrossRef]
- Özkan, E.Y. Approximation by Complex Bivariate Balázs-Szabados Operators. Bull. Malays. Math. Sci. Soc. 2016, 39, 1–16. [Google Scholar] [CrossRef]
- Özkan, E.Y.; Ispir, N. Approximation by (p,q)-Analogue of Bálazs-Szabados Operators. Filomat 2018, 32, 2257–2271. [Google Scholar] [CrossRef] [Green Version]
- Özkan, E.Y. Weighted Statistical Approximation of Kantorovich type q-Balazs-Szabados operators including the Riemann type q-integral. In Academic Researches in Mathematic and Sciences; Gece Kitapliği: Ankara, Turkey, 2018; pp. 9–19. [Google Scholar]
- Özkan, E.Y. Approximation Properties of Kantorovich type q-Balázs-Szabados Operators. Demonstr. Math. 2019, 52, 10–19. [Google Scholar] [CrossRef]
- Agratini, O. On a Class of Bernstein-Type Rational Functions. Numer. Funct. Anal. Optim. 2019, 41, 483–494. [Google Scholar] [CrossRef]
- Hamal, H.; Sabancigil, P. Some approximation properties of new Kantorovich type q-analogue of Balázs–Szabados operators. J. Inequal. Appl. 2020, 2020, 159. [Google Scholar] [CrossRef]
- Holhoş, A. The product of two functions using positive linear operators. Constr. Math. Anal. 2020, 3, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Özkan, E.Y. Quantitative Estimates for the Tensor Product (p,q)-Balázs-Szabados Operators and Associated Generalized Boolean Sum Operators. Filomat 2020, 34, 779–793. [Google Scholar] [CrossRef]
- Özkan, E.Y. Approximation by Fuzzy Bernstein Type Rational Functions. In Academic Studies in Science and Mathematics Sciences; Ucuncu, S.I., Soldatović, T.V., Eds.; Livre de Lyon: Lyon, France, 2020; pp. 71–86. [Google Scholar]
- Chernoff, H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 1952, 23, 493–507. [Google Scholar] [CrossRef]
- Boucheron, S.; Lugosi, G.; Massart, P. Concentration Inequalities. A Nonasymptotic Theory of Independence; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Sisha, O.; Mond, B. The degree of convergence of sequences of linear positive operators. Proc. Natl. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef] [Green Version]
- Holhoş, A. The rate of approximation of functions in an infinite interval by positive linear operators. Stud. Univ. Babeş-Bolyai Math. 2010, 55, 133–142. [Google Scholar]
- Holhoş, A. The rate of convergence of positive linear operators in weighted spaces. Automat. Comput. Appl. Math. 2008, 17, 239–246. [Google Scholar]
- Holhoş, A. Uniform approximation by positive linear operators on noncompact intervals. Automat. Comput. Appl. Math. 2009, 18, 121–132. [Google Scholar]
- Holhoş, A. Quantitative Estimates of Voronovskaya Type in Weighted Spaces. Results Math. 2018, 73, 53. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, Applied Mathematics Series 55; Issued 1964, Tenth Printing; U.S. Government Printing Office: Washington, DC, USA, 1972.
- Fiorenza, R. Hölder and Locally Hölder Continuous Functions, and Open Sets of Class Ck, Ck,λ; Birkhäuser: Cham, Switzerland, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holhoş, A. On the Approximation by Balázs–Szabados Operators. Mathematics 2021, 9, 1588. https://doi.org/10.3390/math9141588
Holhoş A. On the Approximation by Balázs–Szabados Operators. Mathematics. 2021; 9(14):1588. https://doi.org/10.3390/math9141588
Chicago/Turabian StyleHolhoş, Adrian. 2021. "On the Approximation by Balázs–Szabados Operators" Mathematics 9, no. 14: 1588. https://doi.org/10.3390/math9141588
APA StyleHolhoş, A. (2021). On the Approximation by Balázs–Szabados Operators. Mathematics, 9(14), 1588. https://doi.org/10.3390/math9141588