Mortality/Longevity Risk-Minimization with or without Securitization
Abstract
:1. Introduction
2. Mathematical Model and Preliminaries
2.1. Time of Death, Enlargement of Filtration and a Martingale Representation Theorem
2.2. The Quadratic Risk-Minimizing Method
3. Hedging Mortality Risk without Securitization
3.1. Classification of Risks for the Triplet : Preliminary Discussion
- (a)
- τ is said to be weakly non-correlated to X if is an -local martingale.
- (b)
- τ is said to be strongly non-correlated to X if .
- (a)
- There exists a unique tuplet satisfying the conditions (16), and
- (b)
- τ is weakly non-correlated to S if and only if the pair satisfies
- (c)
- τ is strongly non-correlated to S if and only if .
- (a)
- For any that is orthogonal to S, the -martingale is orthogonal to .
- (b)
- It holds that
- (c)
- We have and
3.2. Impact’s Quantification of Mortality Risks: A General Formula
- (a)
- The risk-minimizing strategy for the claim , at term T under , is denoted by and is given byHere is the risk-minimizing strategy under for the claim .
- (b)
- The remaining (undiversified) risk for the mortality claim , at term T under the model , is denoted by and is given by
- (c)
- The value of the risk-minimizing portfolio for the claim , under , is given by
- (a)
- If τ is strongly non-correlated to S, that is, , then the risk-minimizing strategy and the remaining risk for at term T under , denoted by , are given by and
- (b)
- If τ is a pseudo-stopping time, that is, for any -martingale M, then the pair of risk-minimizing strategy and remaining risk for the claim , at term T under , is given by
- (c)
- If τ is independent of such that and h is a deterministic function, then
- (a)
- The random time is assumed to avoid -stopping times. This allows to be a totally inaccessible -stopping time, and for any -adapted RCLL process X.
- (b)
- The process G is strictly positive, that is, the stopping time P-a.s..
- (c)
- The payment processes and payoff processes are predictable processes.
- (d)
- The H-hypothesis holds (i.e., is a -local martingale for any -local martingale M).
3.3. Interplay between Mortality and Random Benefit Policies
- (a)
- A zero-coupon longevity bond is an insurance contract that pays the conditional survival probability at term T (i.e., an insurance contract with payoff ).
- (b)
- A pure endowment insurance, with benefit g, is an insurance contract that pays g at term T if the insured survives (i.e., an insurance contract with payoff ).
- (c)
- An endowment insurance contract with benefit pair is an insurance contract that pays g at term T if the insured survives and pays at the time of death if the insured dies before or at the maturity (i.e., its payoff is ).
3.4. Proofs of Theorems 5 and 6
4. Hedging Mortality Risk with Insurance Securitization
- (a)
- The discounted price process of the pure endowment insurance contract with benefit at term T, is denoted by , and is given by
- (b)
- The discounted price process of the longevity bond, with term T, is denoted by B and satisfieswhere
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Lemma 1
References
- Föllmer, H.; Sondermann, D. Hedging of Non-Redundant Contingent Claims. In Contributions to Mathematical Economics; Hildenbrand, W., Mas-Colell, A., Eds.; Elsevier: North-Holland, The Netherlands, 1986; pp. 205–223. [Google Scholar]
- Barigou, K.; Dhaene, J. Fair valuation of insurance liabilities via mean-variance hedging in a multi-period setting. Scand. Actuar. J. 2019, 2, 163–187. [Google Scholar] [CrossRef]
- Barigou, K.; Chen, Z.; Dhaene, J. Fair dynamic valuation of insurance liabilities: Merging actuarial judgement with market-and time-consistency. Insur. Math. Econ. 2019, 88, 19–29. [Google Scholar] [CrossRef]
- Deelstra, G.; Devolder, P.; Gnameho, K.; Hieber, P. Valuation of hybrid financial and actuarial products in life insurance by novel three-step method. ASTIN Bull. 2020, 50, 709–742. [Google Scholar] [CrossRef]
- Dhaene, J.; Stassen, B.; Barigou, K.; Linders, D.; Chen, Z. Fair valuation of insurance liabilities: Merging actuarial judgement and market-consistency. Insur. Math. Econ. 2017, 76, 14–27. [Google Scholar] [CrossRef]
- Pelsser, A.; Stadje, M. Time-consistent and market-consistent evaluations. Math. Financ. 2014, 24, 25–65. [Google Scholar] [CrossRef] [Green Version]
- Dahl, M.; Melchior, M.; Møller, T. On systematic mortality risk and risk-minimization with survivor swaps. Scand. Actuar. J. 2008, 2008, 114–146. [Google Scholar] [CrossRef]
- Dahl, M.; Møller, T. Valuation and hedging of life insurance liabilities with systematic mortality risk. Insur. Math. Econ. 2006, 39, 193–217. [Google Scholar] [CrossRef]
- Blake, D.; Burrows, W. Survivor bonds: Helping to hedge mortality risk. J. Risk Insur. 2001, 68, 339–348. [Google Scholar] [CrossRef]
- Barrieu, P.; Albertini, L. The Handbook of Insurance-Linked Securities; Wiley Finance: Chichester, UK, 2009. [Google Scholar]
- Blake, D.; Cairns, A.J.G.; Dowd, D. The birth of the life market. Asia Pac. J. Risk Insur. 2008, 3, 6–36. [Google Scholar] [CrossRef]
- Blake, D.; Cairns, A.J.G. Longevity risk and capital markets: The 2019–2020 update. Insur. Math. Econ. 2021, 99, 395–439. [Google Scholar] [CrossRef]
- Blake, D.; El Karoui, N.; Loisel, S.; MacMinn, R. Longevity risk and capital markets: The 2015–2016 update. Insur. Math. Econ. 2018, 78, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.S.; Blake, D.P.; MacMinn, R.D. Longevity risk and capital markets: The 2013–2014 update. Insur. Math. Econ. 2015, 63, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jevtić, P.; Kwak, M.; Pirvu, T.A. Longevity Bond Pricing in Equilibrium. Working Paper WP—17-04, Montreal Institute of Structured Finance and Derivatives. 2017. Available online: https://cdi-icd.org/en/publications/working-paper-series/ (accessed on 7 June 2021).
- Lee, R.D.; Carter, L.R. Modelling and forecasting U.S. mortality. J. Am. Stat. Assoc. 1992, 87, 659–675. [Google Scholar]
- Barbarin, J. Valuation and Hedging in Insurance: Applications to Life and Non-Life Insurance Contracts; VDM Verlag: Saarbrücken, Germany, 2009. [Google Scholar]
- Friedberg, L.; Webb, A. Life is Cheap: Using mortality bonds to hedge aggregate mortality risk. BE J. Econ. Anal. Policy 2007, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Bauer, D.; Börger, M.; Rus, J. On the pricing of longevity-linked securities. Insur. Math. Econ. 2010, 46, 139–149. [Google Scholar] [CrossRef]
- Cairns, A.; Blake, D.; Dowd, K. Pricing death: Frameworks for the valuation and securitization of mortality risk. ASTIN Bull. 2006, 36, 79–120. [Google Scholar] [CrossRef] [Green Version]
- Mehra, R.; Prescott, E.C. The equity premium: A puzzle. J. Monet. Econ. 1985, 15, 145–161. [Google Scholar] [CrossRef]
- Li, H.; De Waegenaere, A.; Melenberg, B. Robust Mean–Variance Hedging of Longevity Risk. J. Risk Insur. 2017, 84, 459–475. [Google Scholar] [CrossRef]
- Choulli, T.; Daveloose, C.; Vanmaele, M. A martingale representation theorem and valuation of defaultable securities. Math. Financ. 2020, 30, 1527–1564. [Google Scholar] [CrossRef] [Green Version]
- Barrieu, P.; Bensusan, H.; El Karoui, N.; Hillairet, C.; Loisel, S.; Ravanelli, C.; Salhi, Y. Understanding, modelling and managing longevity risk: Key issues and main challenges. Scand. Actuar. J. 2012, 2012, 203–231. [Google Scholar] [CrossRef] [Green Version]
- Bisetti, E. The impact of longevity risk on the term structure of the risk-return tradeoff. Rivista Polit. Econ. 2012, 4, 79–119. [Google Scholar]
- Barbarin, J. Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios. Insur. Math. Econ. 2008, 43, 41–55. [Google Scholar] [CrossRef]
- Biagini, F.; Botero, C.; Schreiber, I. Risk-minimization for life insurance liabilities with dependent mortality risk. Math. Financ. 2015, 27, 505–533. [Google Scholar] [CrossRef]
- Biagini, F.; Rheinländer, T.; Schreiber, I. Risk-minimization for life insurance liabilities with basis risk. Math. Financ. Econ. 2016, 10, 151–178. [Google Scholar] [CrossRef]
- Biagini, F.; Schreiber, I. Risk-minimization for life insurance liabilities. SIAM J. Financ. Math. 2013, 4, 243–264. [Google Scholar] [CrossRef] [Green Version]
- Ceci, C.; Colaneri, K.; Cretarola, A. Unit-linked life insurance policies: Optimal hedging in partially observable market models. Insur. Math. Econ. 2017, 76, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Ceci, C.; Colaneri, K.; Cretarola, A. Indifference pricing of pure endowments via BSDEs under partial information. Scand. Actuar. J. 2020, 10, 904–933. [Google Scholar] [CrossRef]
- Møller, T. Risk-Minimizing Hedging Strategies for Unit-Linked Life Insurance Contract. ASTIN Bull. 1998, 28, 17–47. [Google Scholar] [CrossRef] [Green Version]
- Møller, T. Risk-minimizing hedging strategies for insurance payment processes. Financ. Stoch. 2001, 5, 419–446. [Google Scholar] [CrossRef]
- Dhaene, J.; Kukush, A.; Luciano, E.; Schoutens, W.; Stassen, B. On the (in)-dependence between financial and actuarial risks. Insur. Math. Econ. 2013, 52, 522–531. [Google Scholar] [CrossRef]
- Biagini, F.; Rheinländer, T.; Widenmann, J. Hedging mortality claims with longevity bonds. ASTIN Bull. 2013, 43, 123–157. [Google Scholar] [CrossRef] [Green Version]
- Gerber, H.U.; Shiu, E.S.W.; Yang, H. Valuing equity-linked death benefits in jump diffusion models. Insur. Math. Econ. 2013, 53, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Dellacherie, M.; Maisonneuve, B.; Meyer, P.-A. Probabilités et Potentiel, Chapitres XVII-XXIV: Processus de Markov (fin), Compléments de Calcul Stochastique; Hermann: Paris, France, 1992. [Google Scholar]
- Aksamit, A.; Choulli, T.; Deng, J.; Jeanblanc, M. Arbitrages in a progressive enlargement setting. In Arbitrage, Credit and Informational Risks; Peking University Series in Mathematics; World Science Publishinh: Hackensack, NJ, USA, 2014; Volume 5, pp. 53–86. [Google Scholar]
- Blanchet-Scalliet, C.; Jeanblanc, M. Hazard rate for credit risk and hedging defaultable contingent claims. Financ. Stoch. 2004, 8, 145–159. [Google Scholar] [CrossRef]
- Schweizer, M. A Guided Tour through Quadratic Hedging Approaches. In Option Pricing, Interest Rates and Risk Management; Jouini, E., Cvitanić, J., Musiela, M., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 538–574. [Google Scholar]
- Ansel, J.P.; Stricker, C. Lois de martingale, densités et décomposition de Föllmer-Schweizer. Ann. I H Poincaré-PR 1992, 28, 375–392. [Google Scholar]
- Choulli, T.; Stricker, C. Deux applications de la décomposition de Galtchouk-Kunita-Watanabe. In Séminaire de Probabilités XXX; Springer: Berlin/Heidelberg, Germany, 1996; pp. 12–23. [Google Scholar]
- Aksamit, A.; Choulli, T.; Deng, J.; Jeanblanc, M. No-arbitrage up to random horizon for quasi-left-continuous models. Financ. Stoch. 2017, 21, 1103–1139. [Google Scholar] [CrossRef]
- Choulli, T.; Deng, J. Structure Conditions under Progressively Added Information. Theory Probab. Appl. 2020, 65, 418–453. [Google Scholar] [CrossRef]
- Choulli, T.; Yansori, S. Log-optimal and numéraire portfolios for market models stopped at a random time. arXiv 2020, arXiv:1810.12762. [Google Scholar]
- Jacod, J. Calcul Stochastique et Problèmes de Martingales; Lecture Notes in Mathematics No. 714; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Jacod, J.; Shiryaev, A. Limit Theorems for Stochastic Processes, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Choulli, T.; Krawczyk, L.; Stricker, C. E-martingales and their applications in mathematical finance. Ann. Probab. 1998, 26, 853–876. [Google Scholar] [CrossRef]
- Monat, P.; Stricker, C. Föllmer-Schweizer decomposition and mean-variance hedging for general claims. Ann. Probab. 1995, 23, 605–628. [Google Scholar] [CrossRef]
- Nikeghbali, A.; Yor, M. A Definition and Some Characteristic Properties of Pseudo-Stopping Times. Ann. Probab. 2005, 33, 1804–1824. [Google Scholar] [CrossRef] [Green Version]
- Bielecki, T.; Rutkowski, M. Credit Risk: Modeling, Valuation and Hedging; Springer Finance: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Jeulin, T. Semi-Martingales et Grossissement de Filtration; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1980; Volume 833. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choulli, T.; Daveloose, C.; Vanmaele, M. Mortality/Longevity Risk-Minimization with or without Securitization. Mathematics 2021, 9, 1629. https://doi.org/10.3390/math9141629
Choulli T, Daveloose C, Vanmaele M. Mortality/Longevity Risk-Minimization with or without Securitization. Mathematics. 2021; 9(14):1629. https://doi.org/10.3390/math9141629
Chicago/Turabian StyleChoulli, Tahir, Catherine Daveloose, and Michèle Vanmaele. 2021. "Mortality/Longevity Risk-Minimization with or without Securitization" Mathematics 9, no. 14: 1629. https://doi.org/10.3390/math9141629
APA StyleChoulli, T., Daveloose, C., & Vanmaele, M. (2021). Mortality/Longevity Risk-Minimization with or without Securitization. Mathematics, 9(14), 1629. https://doi.org/10.3390/math9141629