Bounds for the Energy of Graphs
Abstract
:1. Introduction
2. Lower Bounds for the Energy of Graphs
3. Hyperenergetic and Hypoenergetic Graphs
4. Upper Bounds for the Energy of Graphs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutman, I. The energy of a graph, 10. Steiermärkisches Mathematisches Symposium (Stift Rein, Graz, 1978). Ber. Math. Stat. Sekt. Forschungszent. Graz 1978, 103, 1–22. [Google Scholar]
- Gutman, I. The energy of a graph: Old and new results. In Algebraic Combinatorics and Applications; Betten, A., Kohnert, A., Laue, R., Wassermann, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 196–211. [Google Scholar]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Gutman, I. On graphs whose energy exceeds the number of vertices. Linear Algebra Appl. 2008, 429, 2670–2677. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Li, X.; Zhang, J. Graph energy. In Analysis of Complex Networks; Dehmer, M., Emmert-Streib, F., Eds.; From Biology to Linguistics; Wiley-VCH: Weinheim, Germany, 2009; pp. 145–174. [Google Scholar]
- McClelland, B.J. Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys. 1971, 54, 640–643. [Google Scholar] [CrossRef]
- Babic, D.; Gutman, I. More lower bounds for the total π-electron energy of alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 1995, 32, 7–17. [Google Scholar]
- Gutman, I.; Teodorovic, A.V.; Nedeljkovic, L. Topological properties of benzenoid systems. Bounds and approximate formula for total π-electron energy. Theor. Chim. Acta 1984, 65, 23–31. [Google Scholar] [CrossRef]
- Jahanbani, A. Some new lower bounds for energy of graphs. Appl. Math. Comput. 2017, 296, 233–238. [Google Scholar] [CrossRef]
- Koolen, J.H.; Moulton, V. Maximal energy graphs. Adv. Appl. Math. 2001, 26, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2010. [Google Scholar]
- Caporossi, G.; Cvetkovic, D.; Gutman, I.; Hansen, P. Variable Neighborhood Search for Extremal Graphs. 2. Finding Graphs with Extremal Energy. J. Chem. Inf. Comput. Sci. 1999, 39, 984–996. [Google Scholar] [CrossRef]
- Ma, X. A low bound on graph energy in terms of minimum degree. MATCH Commun. Math. Comput. Chem. 2019, 81, 393–404. [Google Scholar]
- Akbari, S.; Hosseinzadeh, M.A. A short proof for graph energy is at least twice of minimum degree. MATCH Commun. Math. Comput. Chem. 2020, 83, 631–633. [Google Scholar]
- Oboudi, M.R. A very short proof for a lower bound for energy of graphs. MATCH Commun. Math. Comput. Chem. 2020, 84, 345–347. [Google Scholar]
- Akbari, S.; Ghahremani, M.; Hosseinzadeh, M.A.; Ghezelahmad, S.K.; Rasouli, H.; Tehranian, A. A Lower Bound for Graph Energy in Terms of Minimum and Maximum Degrees. MATCH Commun. Math. Comput. Chem. 2019, 81, 393–404. [Google Scholar]
- Edwards, C.S. The largest vertex degree sum for a triangle in a graph. Bull. London Math. Soc. 1977, 9, 203–208. [Google Scholar] [CrossRef]
- Ilic, A.; Liu, B. On the upper bounds for the first Zagreb index. Kragujev. J. Math. 2011, 35, 173–182. [Google Scholar]
- Mildorf, T.J. Olympiad Inequalities. 2005. Available online: https://artofproblemsolving.com/articles/files/MildorfInequalities.pdf (accessed on 16 May 2021).
- Indulal, G.; Vijayakumar, A. Reciprocal graphs. Malaya J. Mat. 2016, 4, 380–387. [Google Scholar]
- Filipovski, S.; Jajcay, R. New upper bounds for the energy and spectral radius of graphs. MATCH Commun. Math. Comput. Chem. 2020, 84, 335–343. [Google Scholar]
- Gutman, I. Hyperenergetic and Hypoenergetic Graphs, Zbornik Radova. In Selected Topics on Applications of Graph Spectra; Matematicki Institut SANU: Beograd, Serbia, 2011; pp. 113–135. [Google Scholar]
- Gutman, I. Hyperenergetic molecular graphs. J. Serbian Chem. Soc. 1999, 64, 199–205. [Google Scholar]
- Walikar, H.B.; Ramane, H.S.; Hampiholi, P. On the energy of a graph. In Graph Connections; Balakrishnan, R., Mulder, H.M., Vijayakumar, A., Eds.; Allied Publishers: New Delhi, India, 1999; pp. 120–123. [Google Scholar]
- Nikiforov, V. The energy of graphs and matrices. J. Math. Anal. Appl. 2007, 326, 1472–1475. [Google Scholar] [CrossRef] [Green Version]
- Jones, O. Spectra of Simple Graphs. 2013. Available online: https://www.whitman.edu/Documents/Academics/Mathematics/Jones.pdf (accessed on 16 May 2021).
- Filipovski, S. New upper bounds for the first Zagreb index. MATCH Commun. Math. Comput. Chem. 2015, 74, 97–101. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipovski, S.; Jajcay, R. Bounds for the Energy of Graphs. Mathematics 2021, 9, 1687. https://doi.org/10.3390/math9141687
Filipovski S, Jajcay R. Bounds for the Energy of Graphs. Mathematics. 2021; 9(14):1687. https://doi.org/10.3390/math9141687
Chicago/Turabian StyleFilipovski, Slobodan, and Robert Jajcay. 2021. "Bounds for the Energy of Graphs" Mathematics 9, no. 14: 1687. https://doi.org/10.3390/math9141687
APA StyleFilipovski, S., & Jajcay, R. (2021). Bounds for the Energy of Graphs. Mathematics, 9(14), 1687. https://doi.org/10.3390/math9141687