Fractional Calculus in Russia at the End of XIX Century
Abstract
:1. Introduction
2. Liouville’s Approach and Its Analysis by Letnikov
3. Letnikov’s Contribution to Fractional Calculus
3.1. Letnikov or Grünwald-Letnikov Derivative
3.2. Solution to Certain Differential Equations
4. Sonine-Letnikov Discussion
5. Sonine’s Contribution to Fractional Calculus
5.1. Sonine’s Fractional Derivative and Integral
5.2. Sonine Kernel and Sonine Integral Equations
5.3. Higher Order Hypergeometric Functions
6. Nekrasov’s Contribution to Fractional Calculus
7. Conclusions
Short Biographies
Letnikov Alexey Vasil’evich (1837–1888), Russian mathematician. A short biography.
Sonine Nikolai Yakovlevich (1849–1915), Russian mathematician. A short biography.
Nekrasov Pavel Alekseevich (1853–1924), Russian mathematician and philosopher. A short biography.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993; Revised in 1987. [Google Scholar]
- Letnikov, A.V. On historical development of the theory of differentiation of an arbitrary order. Mat. Sb. 1868, 3, 85–112. (In Russian) [Google Scholar]
- Potapov, A.A. A short essay on the origin and formation of the theory of fractional integro-differentiation. Nonlinear World 2003, 1, 69–81. (In Russian) [Google Scholar]
- Potapov, A.A. Essays on the development of fractional calculus in the A.V. Letnikov’s works. To 175th anniversary of A. V. Letnikov, Radioelectronics, Nanosystems. Inf. Technol. (Radioelektron. Nanosistemy Inf. Tehnol.) 2012, 4, 3–102. (In Russian) [Google Scholar]
- Letnikov, A.V.; Chernykh, V.A. The Foundation of Fractional Calculus (with Applications to the Theory of Oil and Gas Production, Underground Hydrodynamics and Dynamics of Biological Systems); Neftegaz: Moscow, Russia, 2011; 429p. (In Russian) [Google Scholar]
- Letnikov, A.V. Theory of differentiation of an arbitrary order. Mat. Sb. 1868, 3, 1–68. (In Russian) [Google Scholar]
- Letnikov, A.V. To explanation of the main statements of the theory of differentiation of an arbitrary order. Mat. Sb. 1873, 6, 413–445. (In Russian) [Google Scholar]
- Nekrasov, P.A. General differentiation. Mat. Sb. 1888, 14, 45–166. (In Russian) [Google Scholar]
- Sonine, N.Y. On differentiation of an arbitrary order. Mat. Sb. 1872, 6, 1–38. (In Russian) [Google Scholar]
- Vashchenko-Zakharchenko, M.E. On fractional differentiation. Q. J. Pure Appl. Math. Ser. 1 1861, IV, 237–243. [Google Scholar]
- Grünwald, A.K. Über “begrentze” Derivationen und deren Anwendung. Zeitschrift für Angew. Math. Phys. 1867, 12, 441–480. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions: Related Topics and Applications, 2nd ed.; Springer: Berlin, Germany; New York, NY, USA, 2020; 540p. [Google Scholar]
- Nekrasov, P.A.; Pokrovskii, P.M. On examination of manuscripts by A. V. Letnikov, presented after his death to the Moscow Mathematical Society. Mat. Sb. 1889, 14, 202–204. (In Russian) [Google Scholar]
- Liouville, J. Memoire sur quelques Questions de Geometrie et de Mecanique, et sur un nouveau genre de Calcul pour resoudre ces Questions. J. Ecole Polytech. 1832, 13, 1–69. [Google Scholar]
- Liouville, J. Memoire sur le Calcul des differentielles a indices quelconques. J. Ecole Polytech. 1832, 13, 71–162. [Google Scholar]
- Liouville, J. Memoire sur une formule d analyse. J. Reine Angew. Math. (Grelle’s J.) 1834, 12, 273–287. [Google Scholar]
- Letnikov, A.V. On integration of the equation . Mat. Sb. 1889, 14, 205–215. (In Russian) [Google Scholar]
- Abel, N.H. Auflösung einer mechanischen Aufgabe. J. FÜr Die Reine und Angew. Math. 1826, 1, 153–157. [Google Scholar]
- Sonine, N.Y. Sur la généralisation d’une formule d’Abel. Acta Math. 1884, 4, 171–176. (In French) [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. General Fractional Integrals and Derivatives with the Sonine Kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General Fractional Integrals and Derivatives of Arbitrary Order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef] [Green Version]
- Kropotov, A.I. Nikolai Yakovlevich Sonine; Nauka: Leningrad, USSR, 1967; 136p. (In Russian) [Google Scholar]
- Olver, F.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; National Institute of Standards and Technology: Gaithersburg, MD, USA; Cambridge University Press: New York, NY, USA, 2010; 951 + xv pages and a CD.
- Sonine, N.Y. Recherches sur les fonctions celindriques et le développment des fonctions continues en series. Math. Ann. 1880, 16, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Grandits, P. Some notes on Sonine-Gegenbauer integrals. Int. Transf. Spec. Funct. 2019, 30, 128–137. [Google Scholar] [CrossRef]
- Rösler, M.; Voit, M. Sonine Formulas and Intertwining Operators in Dunkl Theory. Int. Math. Res. Not. 2020. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E.; Mikosch, T.; Resnick, S.I. (Eds.) Levy Processes. Theory and Applications; Birkhäuser: Boston, MA, USA, 2001; 418p. [Google Scholar]
- Rösler, M.; Voit, M. Beta distributions and Sonine integrals for Bessel functions on symmetric cones. Stud. Appl. Math. 2018, 141, 474–500. [Google Scholar] [CrossRef] [Green Version]
- Sonine, N.Y. Note sur une formule de Gauss. Bull. Soc. Math. Fr. 1881, 9, 162–166. (In French) [Google Scholar] [CrossRef] [Green Version]
- Sonine, N.Y. Research on Cylindric Functions and Orthogonal Polynomials; Akhieser, N.I., Ed.; GITTL: Moscow, Russia, 1954; 244p. (In Russian) [Google Scholar]
- Nekrasov, P.A. Application of the general differentiation to the integration of the equation of the type ∑(as + bsx)xsDsy = 0. Mat. Sb. 1889, 14, 344–393. (In Russian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogosin, S.; Dubatovskaya, M. Fractional Calculus in Russia at the End of XIX Century. Mathematics 2021, 9, 1736. https://doi.org/10.3390/math9151736
Rogosin S, Dubatovskaya M. Fractional Calculus in Russia at the End of XIX Century. Mathematics. 2021; 9(15):1736. https://doi.org/10.3390/math9151736
Chicago/Turabian StyleRogosin, Sergei, and Maryna Dubatovskaya. 2021. "Fractional Calculus in Russia at the End of XIX Century" Mathematics 9, no. 15: 1736. https://doi.org/10.3390/math9151736
APA StyleRogosin, S., & Dubatovskaya, M. (2021). Fractional Calculus in Russia at the End of XIX Century. Mathematics, 9(15), 1736. https://doi.org/10.3390/math9151736