New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications
Abstract
:1. Introduction
2. Hermite–Hadamard Type Inequality for ℘-Convex Functions
3. Ostrowski Type Inequalitiy
- I.
- letting and then we get Lemma 4.
- II.
- letting and then we get Lemma 1.
- III.
- letting and then we get Lemma 2.
- (a)
- For we have
- (b)
- For we have
- (a)
- For the following inequality holds:
- (a)
- For the following inequality holds:
- (a)
- For we have
- (b)
- For we have
- (a)
- For the following inequality holds:
- (b)
- For the following inequality holds:
- (a)
- For we have
- (b)
- For we have
- (a)
- For the following inequality holds:
- (b)
- For the following inequality holds:
4. Applications
4.1. Matrices
4.2. Fox–Wright Function
- (a)
- For the following inequality holds:
- (b)
- For the following inequality holds:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlGhamdi, A.; Bazighifan, O.; El-Nabulsi, R.A. Important criteria for asympotatic properties of nonlinear differential equations. Mathematics 2021, 9, 1659. [Google Scholar] [CrossRef]
- Bazighifan, O.; Almutairi, A.; Almarri, B.; Marin, M. An oscillation criterion of nonlinear differential equations with advanced term. Symmetry 2021, 13, 843. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef] [Green Version]
- Dokuyucu, M.A. A fractional order alcoholism model via Caputo-Fabrizio derivative. AIMS Math. 2019, 5, 781–797. [Google Scholar] [CrossRef]
- Althubiti, S.; Bazighifan, O.; Alotaibi, H.; Awrejcewicz, J. New oscillation criteria for neutral deley differential equations of fourth-order. Symmetry 2021, 13, 1277. [Google Scholar] [CrossRef]
- Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, A.M. A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform. Symmetry 2021, 13, 1254. [Google Scholar] [CrossRef]
- Verma, P.; Kumar, M.; Shukla, A. Analysis on Krasnoselskii’s fixed point theorem of fuzzy variable fractional differential equation for a novel coronavirus (COVID-19) model with singular operator. Inter. J. Model. Sim. Sci. Comput. 2021, 12, 2150034. [Google Scholar] [CrossRef]
- Atkinson, C.; Osseiran, A. Rational solutions for the time-fractional diffusion Eeuation. SIAM J. Appl. Math. 2021, 71, 92–106. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, S.; Chen, W.; Zhou, Z.; Magin, R.L. A survey of models of ultraslow diffusion in heterogeneous materials. Appl. Mech. Rev. 2019, 71, 040802. [Google Scholar] [CrossRef]
- Rashid, S.; Ashraf, R.; Nisar, K.S.; Abdeljawad, T. Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense. J. Math. 2020, 2020, 1626091. [Google Scholar] [CrossRef]
- Ge-JiLe, H.; Rashid, S.; Noor, M.A.; Suhail, A.; Chu, Y.-M. Some unified bounds for exponentially TGS-convex functions governed by conformable fractional operators. AIMS Math. 2020, 5, 6108–6123. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Diff. Eq. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Khan, H.; Chu, Y.-M. On new fractional integral inequalities for p-convexity within interval-valued functions. Adv. Diff. Eq. 2020, 2020, 330. [Google Scholar] [CrossRef]
- Rashid, S.; Sultana, S.; Hammouch, Z.; Jarad, F.; Hamed, Y.S. Novel aspects of discrete dynamical type inequalities within fractional operators having generalized h-discrete Mittag-Leffler kernel. Chaos Solitons Fract. 2021, 151. [Google Scholar] [CrossRef]
- Zhou, S.-S.; Rashid, S.; Rauf, A.; Jarad, F.; Hamed, Y.S.; Abualnaja, K.M. Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Math. 2021, 6, 8001–8029. [Google Scholar] [CrossRef]
- Ostrowski, A. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Rashid, S.; Sultana, S.; Jarad, F.; Jafari, H.; Hamed, Y.S. More efficient estimates via h-discrete fractional calculus theory and applications. Chaos Solitons Fract. 2021, 147, 110981. [Google Scholar] [CrossRef]
- Ge-Jile, H.; Rashid, S.; Farooq, F.B.; Sultana, S. Some inequalities for a new class of convex functions with applications via local fractional integral. J. Fun. Spaces. 2021, 2021, 6663971. [Google Scholar] [CrossRef]
- Zhou, S.-S.; Rashid, S.; Parveen, S.; Akdemir, A.O.; Hammouch, Z. New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Math. 2021, 6, 4507–4525. [Google Scholar] [CrossRef]
- Rashid, S.; Chu, Y.-M.; Singh, J.; Kumar, D. A unifying computational framework for novel estimates involving discrete fractional calculus approaches. Alexandria Eng. J. 2021, 60. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Ashraf, R.; Chu, Y.-M. New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel. Comput. Model. Eng. Sci. 2020, 126, 359–378. [Google Scholar]
- Chu, Y.-M.; Rashid, S.; Abdeljawad, T.; Khalid, A.; Kalsoom, H. On new generalized unified bounds via generalized exponentially harmonically s-convex functions on fractal sets. Adv. Diff. Eq. 2021, 2021, 218. [Google Scholar] [CrossRef]
- İşcan, İ. Ostrowski type inequalities for p-convex functions. New Trends. Math. Sci. 2016, 4, 140–150. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; İşcan, İ.; Chu, Y.-M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Diff. Eq. 2020, 2020, 496. [Google Scholar] [CrossRef]
- Chen, S.-B.; Rashid, S.; Noor, M.A.; Hammouch, Z.; Chu, Y.-M. New fractional approaches for n-polynomial P-convexity with applications in special function theory. Adv. Diff. Eq. 2020, 2020, 543. [Google Scholar] [CrossRef]
- İşcan, İ.; Turhan, S.; Maden, S. Hermite-Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions. Filomat 2017, 31, 5945–5953. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Lei, H.; Hu, G.; Du, T. Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and p-convex mappings. AIMS Math. 2021, 6, 3525–3545. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Thatsatian, A.; Ntouyas, S.K.; Tariboon, J. Some Ostrowski type inequalities for p-convex functions via generalized fractional integrals. J. Math. Inequal. 2019, 13, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Gürbüz, M.; Taşdan, Y.; Set, E. Some inequalities obtained by fractional integrals of positive real orders. J. Inequal. Appl. 2020, 152, 1–11. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Chu, Y.-M. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions. AIMS Math. 2020, 5, 2629–2645. [Google Scholar] [CrossRef]
- Wang, J.; Deng, J.; Fečkan, M. Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville fractional integrals. Ukr. Math. J. 2013, 65, 193–211. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Barnett, N.S. Inequalities for Beta and Gamma functions via some classical and new integral inequalities. J. Inequal. Appl. 2000, 5, 103–165. [Google Scholar] [CrossRef] [Green Version]
- Sababheh, M. Convex functions and means of matrices. arXiv 2016, arXiv:1606.08099. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory of Applications of Fractional Differentia Equations; Elesvier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Steinerberger, S. The Hermite-Hadamard inequality in higher dimensions. J. Geo. Anal. 2020, 30, 466–483. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, S.; Khalid, A.; Bazighifan, O.; Oros, G.I. New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications. Mathematics 2021, 9, 1753. https://doi.org/10.3390/math9151753
Rashid S, Khalid A, Bazighifan O, Oros GI. New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications. Mathematics. 2021; 9(15):1753. https://doi.org/10.3390/math9151753
Chicago/Turabian StyleRashid, Saima, Aasma Khalid, Omar Bazighifan, and Georgia Irina Oros. 2021. "New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications" Mathematics 9, no. 15: 1753. https://doi.org/10.3390/math9151753
APA StyleRashid, S., Khalid, A., Bazighifan, O., & Oros, G. I. (2021). New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications. Mathematics, 9(15), 1753. https://doi.org/10.3390/math9151753