A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator
Abstract
:1. Introduction, Definitions and Motivation
2. A Set of Main Results
3. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Harmonic Mappings in the Plane; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 2004; Volume 156. [Google Scholar]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Hengartner, W.; Schober, G. Univalent harmonic functions. Trans. Amer. Math. Soc. 1987, 299, 1–31. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Kim, Y.C.; Srivastava, H.M. Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform. Integral Transforms Spec. Funct. 2003, 14, 237–242. [Google Scholar] [CrossRef]
- Sheil-Small, T. Constants for planar harmonic mappings. J. Lond. Math. Soc. 1990, 42, 237–248. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Shanmugam, T.N.; Ramachandran, C.; Ravichandran, V. Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points. Bull. Korean Math. Soc. 2006, 43, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Chand, R.; Singh, P. On certain schlicht mappings. Indian J. Pure Appl. Math. 1979, 10, 1167–1174. [Google Scholar]
- Das, R.N.; Singh, P. On subclasses of schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Ahuja, O.P.; Jahangiri, J.M. Sakaguchi-type harmonic univalent functions. Sci. Math. Japon. 2004, 59, 239–244. [Google Scholar]
- Al-Shaqsi, K.; Darus, M. On subclass of harmonic starlike functions with respect to k-symmetric points. Internat. Math. Forum 2007, 2, 2799–2805. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Roy. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Variables Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.A.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Aouf, M.K.; Mashwani, W.K.; Salleh, Z.; Tang, H. Applications of a new q-difference operator in the Janowski-type meromorphic convex functions. J. Funct. Spaces 2021, 2021, 5534357. [Google Scholar]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with q-analogue of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Darus, M. Inclusion relations of q-Bessel functions associated with generalized conic domain. AIMS Math. 2021, 6, 3624–3640. [Google Scholar] [CrossRef]
- Kwon, O.S.; Khan, S.; Sim, Y.J.; Hussain, S. Bounds for the coefficient of Faber polynomial of meromorphic starlike and convex functions. Symmetry 2019, 11, 1368. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, B.; Khan, N. Partial sums of generalized q-Mittag-Leffler functions. AIMS Math. 2020, 5, 408–420. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B. Some geometric properties of a family of analytic functions involving generalized q-operator. Symmetry 2019, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Aouf, M.K.; Mostafa, A.O. Some properties of analytic functions associated with fractional q-calculus operators. Miskolc Math. Notes 2019, 20, 1245–1260. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Hussain, S.; Naeem, M.; Mahmood, T.; Khan, S. A subclass of univalent functions associated with q-analogue of Choi-Saigo-Srivastava operator. Haceteppe J. Math. Statist. 2020, 49, 1471–1479. [Google Scholar]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar]
- Jahangiri, J.M. Harmonic univalent functions defined by q-calculus operators. Internat. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Porwal, S.; Gupta, A. An application of q-calculus to harmonic univalent functions. J. Qual. Measure. Anal. 2018, 14, 81–90. [Google Scholar]
- Al-Shaqsi, K.; Darus, M. On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator. J. Anal. Appl. 2009, 7, 53–61. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Internat. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M.; Ahmad, Q.Z. Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain. Mathematics 2020, 8, 1334. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z.; Tahir, M. A generalized conic domain and its applications to certain subclasses of analytic functions. Rocky Mt. J. Math. 2019, 49, 2325–2346. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics 2021, 9, 1812. https://doi.org/10.3390/math9151812
Srivastava HM, Khan N, Khan S, Ahmad QZ, Khan B. A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics. 2021; 9(15):1812. https://doi.org/10.3390/math9151812
Chicago/Turabian StyleSrivastava, Hari M., Nazar Khan, Shahid Khan, Qazi Zahoor Ahmad, and Bilal Khan. 2021. "A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator" Mathematics 9, no. 15: 1812. https://doi.org/10.3390/math9151812
APA StyleSrivastava, H. M., Khan, N., Khan, S., Ahmad, Q. Z., & Khan, B. (2021). A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics, 9(15), 1812. https://doi.org/10.3390/math9151812