On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers
Abstract
:1. Introduction
- (i)
- There uniquely exist rational polynomials and with such that
- (ii)
- Let l be the least positive integer such that and have integer coefficients for any nonnegative integer i and
2. Proofs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shorey, T.N.; Tijdeman, R. Exponential Diophantine Equations; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Tijdeman, R. Applications of the Gel’fond-Baker method to rational number theory. In Topics in Number Theory, Proceedings of the Conference Debrecen 1974; Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam, The Netherlands, 1976; Volume 13, pp. 399–416. [Google Scholar]
- Waldschmidt, M. Open Diophantine problems. Mosc. Math. J. 2004, 4, 245–305. [Google Scholar] [CrossRef] [Green Version]
- Brindza, B. Zeros of polynomials and exponential Diophantine equations. Comp. Math 1987, 61, 137–157. [Google Scholar]
- Hajdu, L.; Laishram, S.; Tengely, S. Power values of sums of products of consecutive integers. Acta Arith. 2016, 172, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Subburam, S. On the Diophantine equation lax + mby = ncz. Res. Number Theory 2018, 4, 25. [Google Scholar] [CrossRef]
- Subburam, S. A note on the Diophantine equation (x + a1)r1 + (x + a2)r2 + ⋯ + (x + am)rm = yn. Afrika Mat. 2019, 30, 957–958. [Google Scholar] [CrossRef]
- Bazsó, A. On linear combinations of products of consecutive integers. Acta Math. Hung. 2020, 162, 690–704. [Google Scholar] [CrossRef]
- Bazsó, A.; Berczes, A.; Hajdu, L.; Luca, F. Polynomial values of sums of products of consecutive integers. Monatsh. Math 2018, 187, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Tengely, S.; Ulas, M. Power values of sums of certain products of consecutive integers and related results. J. Number Theory 2019, 197, 341–360. [Google Scholar] [CrossRef] [Green Version]
- Subburam, S. The Diophantine equation (y + q1)(y + q2)⋯(y + qm) = f(x). Acta Math. Hung. 2015, 146, 40–46. [Google Scholar] [CrossRef]
- Laurent, M.; Mignotte, M.; Nesterenko, Y. Formes linéaires en deux logarithmes et determinants d’interpolation. J. Number Theory 1995, 55, 285–321. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, R.; Subburam, S. On the Diophantine equation y2 = ∏i≤8(x + ki). Proc. Indian Acad. Sci. (Math. Sci.) 2018, 128, 41. [Google Scholar] [CrossRef]
- Subburam, S.; Togbe, A. On the Diophantine equation yn = f(x)/g(x). Acta Math. Hung. 2019, 157, 1–9. [Google Scholar] [CrossRef]
- Szalay, L. Superelliptic equation yp = xkp + akp−1xkp−1 + ⋯ + a0. Bull. Greek Math. Soc. 2002, 46, 23–33. [Google Scholar]
- Laurent, M. Linear forms in two logarithms and interpolation determinants II. Acta Arith. 2008, 133, 325–348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subburam, S.; Nkenyereye, L.; Anbazhagan, N.; Amutha, S.; Kameswari, M.; Cho, W.; Joshi, G.P. On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers. Mathematics 2021, 9, 1813. https://doi.org/10.3390/math9151813
Subburam S, Nkenyereye L, Anbazhagan N, Amutha S, Kameswari M, Cho W, Joshi GP. On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers. Mathematics. 2021; 9(15):1813. https://doi.org/10.3390/math9151813
Chicago/Turabian StyleSubburam, S., Lewis Nkenyereye, N. Anbazhagan, S. Amutha, M. Kameswari, Woong Cho, and Gyanendra Prasad Joshi. 2021. "On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers" Mathematics 9, no. 15: 1813. https://doi.org/10.3390/math9151813
APA StyleSubburam, S., Nkenyereye, L., Anbazhagan, N., Amutha, S., Kameswari, M., Cho, W., & Joshi, G. P. (2021). On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers. Mathematics, 9(15), 1813. https://doi.org/10.3390/math9151813