Marketing Mix Modeling Using PLS-SEM, Bootstrapping the Model Coefficients
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. PLS-SEM
2.2. Sampling Bootstrapping
2.3. Maximum Entropy Bootstrapping
3. Materials and Methods
3.1. Data
3.2. Methods
4. Empirical Results
4.1. Correlations
4.2. Reliability, Validity, Structural Model, and Fit Assessment
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Méndez-Suárez, M.; Estevez, M. Calculation of marketing ROI in marketing mix models, from ROMI, to marketing-created value for shareholders, EVAM. Universia Bus. Rev. 2016, 52, 18–75. [Google Scholar]
- Méndez-Suárez, M.; Monfort, A. The amplifying effect of branded queries on advertising in multi-channel retailing. J. Bus. Res. 2020, 112, 254–260. [Google Scholar] [CrossRef]
- Méndez-Suárez, M.; Monfort, A. Marketing Attribution in Omnichannel Retailing in Springer Proceedings in Business and Economics; Springer: Cham, Switzerland, 2021; pp. 114–120. ISBN 9783030189105. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Fornell, C. A Second Generation of Multivariate Analysis: An Overview; Fornell, C., Ed.; Praeger: New York, NY, USA, 1982. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar]
- Hair, J.F.J.; Hult, G.T.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2017; ISBN 9781483377445. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Monographs on Statistics and Applied Probability; Chapman & Hall/CRC: New York, NY, USA, 1993; ISBN 978-0-412-04231-7. [Google Scholar]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1403–1433. [Google Scholar] [CrossRef]
- Liu, R.Y. Bootstrap Procedures under some Non-I.I.D. Models. Ann. Stat. 1988, 16, 1696–1708. [Google Scholar] [CrossRef]
- Richter, N.F.; Hauff, S.; Schlaegel, C.; Gudergan, S.; Ringle, C.M.; Gunkel, M. Using Cultural Archetypes in Cross-cultural Management Studies. J. Int. Manag. 2016, 22, 63–83. [Google Scholar] [CrossRef]
- Benítez-Márquez, M.D.; Bermúdez-González, G.; Sánchez-Teba, E.M.; Cruz-Ruiz, E. Exploring the antecedents of cruisers’ destination loyalty: Cognitive destination image and cruisers’ satisfaction. Mathematics 2021, 9, 1218. [Google Scholar] [CrossRef]
- Vinod, H.D.; López-de-Lacalle, J. Maximum Entropy Bootstrap for Time Series: The meboot R Package. J. Stat. Softw. 2009, 29, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Orellana, A.; Martínez, M.D.C.V.; Grasso, M. Using Higher-Order Constructs to Estimate Health-Disease Status: The Effect of Health System Performance and Sustainability. Mathematics 2021, 9, 1228. [Google Scholar] [CrossRef]
- Wold, H. Partial Least Squares; Wiley: New York, NY, USA, 1985; ISBN 0471667196. [Google Scholar]
- Chin, W.W. Issues and Opinion on Structural Equation Modeling. MIS Q. 1998, 22, 7–16. [Google Scholar]
- Usakli, A.; Kucukergin, K.G. Using partial least squares structural equation modeling in hospitality and tourism. Int. J. Contemp. Hosp. Manag. 2018, 30, 3462–3512. [Google Scholar] [CrossRef]
- Jagpal, H.S. Measuring joint advertising effects in multiproduct firms. J. Advert. Res. 1981, 21, 65–69. [Google Scholar]
- Olbrich, R.; Schultz, C.D. Multichannel advertising: Does print advertising affect search engine advertising? Eur. J. Mark. 2014, 48, 1731–1756. [Google Scholar] [CrossRef]
- Raspe, R.E. The Surprising Adventures of Baron Munchausen; Standard Ebooks: Nevada County, CA, USA, 1781. [Google Scholar]
- Abdi, H.; Chin, W.W.; Vinzi, V.E.; Russolillo, G.; Trinchera, L. New Perspectives in Partial Least Squares and Related Methods. In Springer Proceedings in Mathematics and Statistics; Abdi, H., Chin, W.W., Esposito Vinzi, V., Russolillo, G., Trinchera, L., Eds.; Springer: New York, NY, USA, 2013; Volume 56, pp. 201–208. ISBN 978-1-4614-8282-6. [Google Scholar]
- Efron, B. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 1987, 82, 171–185. [Google Scholar] [CrossRef]
- Streukens, S.; Leroi-Werelds, S. Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. Eur. Manag. J. 2016, 34, 618–632. [Google Scholar] [CrossRef]
- Carlstein, E. The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence. Ann. Stat. 1986, 14, 1171–1179. [Google Scholar] [CrossRef]
- Kunsch, H.R. The Jackknife and the Bootstrap for General Stationary Observations. Ann. Stat. 1989, 17, 1217–1241. [Google Scholar] [CrossRef]
- Liu, R.Y.; Singh, K. Moving blocks jackknife and bootstrap capture weak dependence. Explor. Limits Bootstrap 1992, 225, 248. [Google Scholar]
- Baldwin, R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Vinod, H.D. Maximum Entropy Bootstrap Algorithm Enhancements; Discussion Paper Series; Fordham University: Bronx, NY, USA, 2013; Volume 2013-04. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Vinod, H. New bootstrap inference for spurious regression problems. J. Appl. Stat. 2016, 43, 317–335. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Sanchez, G. PLS Path Modeling with R; Trowchez Editions: Berkeley, CA, USA, 2013. [Google Scholar]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling, Version 0.5-5; R Packag. 2021. Available online: https://cran.r-project.org/web/packages/semTools/semTools.pdf (accessed on 1 August 2021).
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Henseler, J. Partial least squares path modeling: Quo vadis? Qual. Quant. 2018, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
Variables | Median | Min | Max | Skewness | Kurtosis |
---|---|---|---|---|---|
Online Sales | −0.2 | −0.6 | 9.0 | 6.8 | 54.5 |
Offline Sales | −0.3 | −0.7 | 5.5 | 3.4 | 12.4 |
Queries | −0.3 | −0.8 | 6.7 | 4.7 | 26.7 |
Paid Search | −0.1 | −1.8 | 5.3 | 1.5 | 6.3 |
Store flyer | 0.2 | −1.1 | 2.4 | 0.2 | −1.3 |
TV advertising | 0.1 | −1.4 | 4.6 | 1.1 | 3.7 |
Display | 0.0 | −1.3 | 3.5 | 1.3 | 2.4 |
−0.2 | −1.5 | 3.7 | 1.0 | 1.2 | |
Retargeting | 0.0 | −1.1 | 7.6 | 3.7 | 25.0 |
0.0 | −1.2 | 5.0 | 1.8 | 5.8 | |
YouTube | −0.2 | −0.9 | 3.7 | 1.3 | 2.0 |
Christmas | −0.2 | −0.2 | 5.4 | 5.1 | 24.6 |
(a) Correlations of Original Series | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 Online Sales | 100 | |||||||||||
2 Offline Sales | 76 | 100 | ||||||||||
3 Queries | 92 | 75 | 100 | |||||||||
4 Paid Search | 69 | 68 | 53 | 100 | ||||||||
5 Store Flyers | 33 | 30 | 38 | 19 | 100 | |||||||
6 TV Advertising | 23 | 6 | 24 | 6 | 46 | 100 | ||||||
7 Display | 32 | 7 | 38 | 12 | 42 | 66 | 100 | |||||
8 Facebook | 34 | 20 | 27 | 28 | 28 | 42 | 48 | 100 | ||||
9 Retargeting | 57 | 52 | 44 | 64 | 11 | 8 | 9 | 28 | 100 | |||
10 Twitter | 32 | 3 | 23 | 19 | 17 | 58 | 64 | 51 | 12 | 100 | ||
11 YouTube | 36 | 15 | 26 | 26 | 29 | 47 | 46 | 71 | 34 | 52 | 100 | |
12 Christmas | 32 | 57 | 29 | 34 | 6 | 2 | −1 | 12 | 39 | −4 | 12 | 100 |
(b) Correlation of one random series, meboot bootstrapping | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 Online Sales | 100 | |||||||||||
2 Offline Sales | 81 | 100 | ||||||||||
3 Queries | 80 | 86 | 100 | |||||||||
4 Paid Search | 72 | 74 | 60 | 100 | ||||||||
5 Store Flyers | 35 | 37 | 45 | 26 | 100 | |||||||
6 TV Advertising | 10 | 11 | 22 | 8 | 41 | 100 | ||||||
7 Display | 14 | 28 | 40 | 14 | 38 | 67 | 100 | |||||
8 Facebook | 29 | 32 | 28 | 29 | 29 | 42 | 41 | 100 | ||||
9 Retargeting | 46 | 40 | 37 | 67 | 13 | 12 | 12 | 30 | 100 | |||
10 Twitter | 8 | 28 | 20 | 20 | 17 | 55 | 62 | 53 | 12 | 100 | ||
11 YouTube | 25 | 27 | 24 | 26 | 30 | 43 | 38 | 70 | 35 | 53 | 100 | |
12 Christmas | 56 | 18 | 22 | 31 | 4 | 1 | −2 | 13 | 32 | −4 | 14 | 100 |
(c) Correlation of one random series, sampling bootstrapping | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 Online Sales | 100 | |||||||||||
2 Offline Sales | 90 | 100 | ||||||||||
3 Queries | 93 | 91 | 100 | |||||||||
4 Paid Search | 59 | 65 | 54 | 100 | ||||||||
5 Store Flyers | 39 | 33 | 40 | 18 | 100 | |||||||
6 TV Advertising | 12 | 4 | 20 | 2 | 42 | 100 | ||||||
7 Display | 41 | 33 | 46 | 23 | 47 | 63 | 100 | |||||
8 Facebook | 31 | 24 | 26 | 31 | 32 | 43 | 53 | 100 | ||||
9 Retargeting | 50 | 55 | 54 | 74 | 22 | 11 | 33 | 39 | 100 | |||
10 Twitter | 44 | 23 | 30 | 33 | 28 | 54 | 61 | 59 | 30 | 100 | ||
11 YouTube | 23 | 11 | 20 | 20 | 32 | 56 | 55 | 71 | 32 | 69 | 100 | |
12 Christmas | 5 | 36 | 7 | 34 | −15 | −19 | −7 | −4 | 24 | −15 | −11 | 100 |
(a) Outer Loading Convergent Validity Bootstrap Results | |||||||
Indicators | Loadings | 95% BCa CI Meboot | CI Amplitude | >0.5? | 95% BCa CI Sampling | CI Amplitude | >0.5? |
Store flyer | 0.93 | (0.87, 0.93) | 0.10 | Yes | (0.75, 0.97) | 0.22 | Yes |
TV advertising | 0.75 | (0.64, 0.83) | 0.14 | Yes | (0.58, 0.87) | 0.30 | Yes |
Display | 0.65 | (0.65, 0.75) | 0.09 | Yes | (0.24, 0.81) | 0.57 | No |
0.78 | (0.71, 0.80) | 0.11 | Yes | (0.53, 0.87) | 0.34 | Yes | |
Retargeting | 0.66 | (0.64, 0.79) | 0.15 | Yes | (0.50, 0.88) | 0.38 | Yes |
0.67 | (0.65, 0.76) | 0.05 | Yes | (0.24, 0.86) | 0.62 | No | |
YouTube | 0.80 | (0.67, 0.82) | 0.19 | Yes | (0.63, 0.88) | 0.25 | Yes |
Latent Variables | AVE | 95% BCa CI Meboot | CI Amplitude | >0.5? | 95% BCa CI Sampling | CI Amplitude | >0.5? |
Online ad | 0.51 | (0.51, 0.55) | 0.04 | Yes | (0.35, 0.62) | 0.27 | No |
Offline ad | 0.72 | (0.66, 0.76) | 0.11 | Yes | (0.63, 0.8) | 0.17 | Yes |
(b) Latent Variables Internal Consistency Reliability Bootstrap Results | |||||||
Latent Variables | Cronbach’s Alpha | 95% BCa CI Meboot | CI Amplitude | 0.60–0.90? | 95% BCa CI Sampling | CI Amplitude | 0.60–0.90? |
Online ad | 0.78 | (0.77, 0.8) | 0.03 | Yes | (0.70, 0.84) | 0.14 | Yes |
Offline ad | 0.63 | (0.6, 0.71) | 0.11 | Yes | (0.44, 0.77) | 0.34 | No |
Latent Variables | Jöreskog’s ρ | 95% BCa CI Meboot | CI Amplitude | >0.7? | 95% BCa CI Sampling | CI Amplitude | >0.7? |
Online ad | 0.85 | (0.85, 0.87) | 0.02 | Yes | (0.45, 1) | 0.55 | No |
Offline ad | 0.84 | (0.82, 0.87) | 0.05 | Yes | (0.50, 1.39) | 0.89 | No |
(c) Latent Variables Discriminant Validity Bootstrap Results | |||||||
Latent Variables | HTMT | 95% BCa CI Meboot | CI Amplitude | CI < 1? | 95% BCa CI Sampling | CI Amplitude | CI < 1? |
Online ad & Offline ad | 0.80 | (0.73, 0.89) | 0.16 | Yes | (0.61, 0.99) | 0.37 | Yes |
(a) Regression Coefficients Bootstrap Results | ||||||||
Endogenous Variables | Exogenous Variables | Path Coefficient | 95% BCa CI Meboot | CI Amplitude | Significance (p < 0.05)? | 95% BCa CI Sampling | CI Amplitude | Significance (p < 0.05)? |
Web sales | Online ad | 0.14 | (0.07, 0.32) | 0.25 | Yes | (0.05, 0.24) | 0.19 | Yes |
Web sales | Offline ad | −0.05 | (−0.14, −0.002) | 0.14 | Yes | (−0.12, 0.02) | 0.14 | No |
Web sales | Queries | 0.75 | (0.58, 0.89) | 0.31 | Yes | (0.62, 0.85) | 0.23 | Yes |
Web sales | Paid Search | 0.24 | (0.06, 0.32) | 0.26 | Yes | (0.15, 0.39) | 0.23 | Yes |
Web sales | Christmas | −0.15 | (−0.15, 0.13) | 0.29 | No | (−0.14, 0.12) | 0.26 | No |
Store sales | Online ad | −0.18 | (−0.24, −0.04) | 0.19 | Yes | (−0.36, −0.01) | 0.35 | Yes |
Store sales | Offline ad | 0.05 | (−0.02, 0.12) | 0.14 | No | (−0.14, 0.16) | 0.30 | No |
Store sales | Queries | 0.52 | (0.27, 0.65) | 0.38 | Yes | (0.42, 0.75) | 0.34 | Yes |
Store sales | Paid Search | 0.39 | (0.31, 0.52) | 0.21 | Yes | (0.12, 0.59) | 0.46 | Yes |
Store sales | Christmas | 0.32 | (0.23, 0.44) | 0.21 | Yes | (0.08, 0.53) | 0.45 | Yes |
Queries | Online ad | 0.38 | (0.27, 0.47) | 0.20 | Yes | (0.12, 0.59) | 0.47 | Yes |
Queries | Offline ad | 0.20 | (0.13, 0.3) | 0.17 | Yes | (0.08, 0.35) | 0.27 | Yes |
Paid Search | Queries | 0.54 | (0.36, 0.62) | 0.26 | Yes | (0.36, 0.66) | 0.30 | Yes |
(b) Predictive accuracy of the structural model evaluated with the magnitude of the explained variance, R2 | ||||||||
Endogenous Variables | R2 | 95% BCa CI Meboot | CI Amplitude | 95% BCa CI Sampling | CI Amplitude | |||
Queries | 0.26 | (0.17, 0.3) | 0.13 | (0.06, 0.36) | 0.30 | |||
Paid Search | 0.29 | (0.13, 0.39) | 0.25 | (0.11, 0.42) | 0.31 | |||
Store sales | 0.79 | (0.77, 0.94) | 0.17 | (0.68, 0.93) | 0.25 | |||
Web sales | 0.92 | (0.91, 0.95) | 0.04 | (0.92, 0.97) | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Suárez, M. Marketing Mix Modeling Using PLS-SEM, Bootstrapping the Model Coefficients. Mathematics 2021, 9, 1832. https://doi.org/10.3390/math9151832
Méndez-Suárez M. Marketing Mix Modeling Using PLS-SEM, Bootstrapping the Model Coefficients. Mathematics. 2021; 9(15):1832. https://doi.org/10.3390/math9151832
Chicago/Turabian StyleMéndez-Suárez, Mariano. 2021. "Marketing Mix Modeling Using PLS-SEM, Bootstrapping the Model Coefficients" Mathematics 9, no. 15: 1832. https://doi.org/10.3390/math9151832
APA StyleMéndez-Suárez, M. (2021). Marketing Mix Modeling Using PLS-SEM, Bootstrapping the Model Coefficients. Mathematics, 9(15), 1832. https://doi.org/10.3390/math9151832