Geometric Numerical Integration of Liénard Systems via a Contact Hamiltonian Approach
Abstract
:1. Introduction
2. A Contact Hamiltonian Formulation of Liénard Systems
2.1. A Brief Review of Liénard Systems
- ,
- if,
- and,
- has exactly one positive zero at, is monotone increasing forand;
2.2. A Brief Review of Contact Hamiltonian Systems
2.3. A Contact Hamiltonian Formulation of Liénard Systems
3. Geometric Numerical Integration of Liénard Systems
3.1. Contact Splitting Integrators
3.2. Modified Hamiltonian and Error Analysis
3.3. Geometric Numerical Integration of Liénard Systems
3.4. A Remark on Variational Integrators
4. Geometric Numerical Integration of the van der Pol Oscillator: Numerical vs. Analytical Results
4.1. Numerical Results
4.1.1. (Harmonic Oscillator)
4.1.2. and (Non-Stiff Regime)
4.1.3. (Stiff Regime)
4.2. Analytical Results
- Case (I)
- : The eigenvalues are complex conjugates, therefore . Since , we have .
- Case (II)
- : This happens when , that is
4.2.1. (Harmonic Oscillator)
4.2.2. (Non-Stiff Regime)
4.2.3. (Stiff Regime)
5. Geometric Numerical Integration of Forced Liénard Systems
The Forced van der Pol Oscillator
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liénard, A. Etude des oscillations entretenues. Revue Générale L’électricité 1996, 23, 901–912. [Google Scholar]
- Van der Pol, B. A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1 1920, 701–710, 754–762. [Google Scholar]
- Nucci, M.C.; Tamizhmani, K.M. Lagrangians for Dissipative Nonlinear Oscillators: The Method of Jacobi Last Multiplier. J. Nonlinear Math. Phys. 2021, 17, 167. [Google Scholar] [CrossRef] [Green Version]
- Cariñena, J.F.; Guha, P. Nonstandard Hamiltonian structures of the Liénard equation and contact geometry. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1940001. [Google Scholar] [CrossRef]
- Choi, J.S.; Tapley, B.D. An extended canonical perturbation method. Celest. Mech. 1973, 7, 77–90. [Google Scholar] [CrossRef]
- Shah, T.; Chattopadhyay, R.; Vaidya, K.; Chakraborty, S. Conservative perturbation theory for nonconservative systems. Phys. Rev. E 2015, 92. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Raman, B.; Stern, A. Structure-Preserving Numerical Integrators for Hodgkin–Huxley-Type Systems. SIAM J. Sci. Comput. 2020, 42, B273–B298. [Google Scholar] [CrossRef] [Green Version]
- Geiges, H. An Introduction to Contact Topology; Cambridge University Press: Cambridge, UK, 2008; Volume 109. [Google Scholar]
- Mrugala, R.; Nulton, J.D.; Schön, J.C.; Salamon, P. Statistical approach to the geometric structure of thermodynamics. Phys. Rev. A 1990, 41, 3156–3160. [Google Scholar] [CrossRef]
- Van der Schaft, A.; Maschke, B. Geometry of Thermodynamic Processes. Entropy 2018, 20, 925. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A. Contact geometry and thermodynamics. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1940003. [Google Scholar] [CrossRef]
- Bravetti, A.; Tapias, D. Thermostat algorithm for generating target ensembles. Phys. Rev. E 2016, 93. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A.; Cruz, H.; Tapias, D. Contact Hamiltonian mechanics. Ann. Phys. 2017, 376, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Torres, P.J.; Wang, C. Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior. Ann. Phys. 2018, 395, 26–44. [Google Scholar] [CrossRef]
- Bravetti, A.; Seri, M.; Vermeeren, M.; Zadra, F. Numerical integration in Celestial Mechanics: A case for contact geometry. Celest. Mech. Dyn. Astron. 2020, 132. [Google Scholar] [CrossRef] [Green Version]
- Vermeeren, M.; Bravetti, A.; Seri, M. Contact variational integrators. J. Phys. A Math. Theor. 2019, 52, 445206. [Google Scholar] [CrossRef] [Green Version]
- Gaset, J.; Gràcia, X.; Muñoz-Lecanda, M.C.; Rivas, X.; Román-Roy, N. New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050090. [Google Scholar] [CrossRef]
- Gaset, J.; Gràcia, X.; Muñoz-Lecanda, M.C.; Rivas, X.; Román-Roy, N. A contact geometry framework for field theories with dissipation. Ann. Phys. 2020, 414, 168092. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.; Cruz, H.; Marmo, G. Contact manifolds and dissipation, classical and quantum. Ann. Phys. 2018, 398, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Simoes, A.A.; Martín de Diego, D.; Lainz Valcázar, M.; de León, M. On the Geometry of Discrete Contact Mechanics. J. Nonlinear Sci. 2021, 31. [Google Scholar] [CrossRef]
- Goto, S.i.; Hino, H. Fast symplectic integrator for Nesterov-type acceleration method. arXiv 2021, arXiv:2106.07620. [Google Scholar]
- Zadra, F.; Seri, M.; Bravetti, A. Support Code for Geometric Numerical Integration of Liénard Systems via a Contact Hamiltonian Approach (v2.0). Zenodo. Available online: https://research.rug.nl/en/publications/support-code-for-geometric-numerical-integration-of-l%C3%ACenard-syste (accessed on 10 August 2021). [CrossRef]
- Perko, L. Differential Equations and Dynamical Systems; Springer: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Arnol’d, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 2010. [Google Scholar]
- De León, M.; Lainz Valcázar, M. Contact Hamiltonian systems. J. Math. Phys. 2019, 60, 102902. [Google Scholar] [CrossRef]
- Pihajoki, P. Explicit methods in extended phase space for inseparable Hamiltonian problems. Celest. Mech. Dyn. Astron. 2014, 121, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Birkhäuser: Boston, MA, USA, 2010. [Google Scholar] [CrossRef]
- Liu, Q.; (Guilin University of Electronic Technology, Guilin, China). Personal communication, 2020.
- Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262–268. [Google Scholar] [CrossRef]
- Marsden, J.E.; West, M. Discrete mechanics and variational integrators. Acta Numer. 2001, 10, 357–514. [Google Scholar] [CrossRef] [Green Version]
- Hairer, E.; Wanner, G.; Lubich, C. Geometric Numerical Integration. Springer Ser. Comput. Math. 2002. [Google Scholar] [CrossRef]
- Amore, P.; Boyd, J.P.; Fernández, F.M. High order analysis of the limit cycle of the van der Pol oscillator. J. Math. Phys. 2018, 59, 012702. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.M.; Geer, J.F. Power Series Expansions for the Frequency and Period of the Limit Cycle of the Van Der Pol Equation. SIAM J. Appl. Math. 1982, 42, 678–693. [Google Scholar] [CrossRef]
- Parlitz, U.; Lauterborn, W. Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys. Rev. A 1987, 36, 1428–1434. [Google Scholar] [CrossRef]
- Hindmarsh, A. ODEPACK. A Collection of ODE System Solvers. In Scientific Computing; Stepleman, R.S., Ed.; North-Holland: Amsterdam, The Netherlands, 1983; pp. 55–64. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De León, M.; Lainz Valcázar, M. Singular Lagrangians and precontact Hamiltonian systems. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950158. [Google Scholar] [CrossRef]
A | B | C | |
---|---|---|---|
Integrator Type (Order) | Mean Running Time (ms) | Standard Deviation (over 10 Runs) | |
---|---|---|---|
Contact hamiltonian (2nd) | 729 | ±13.2 | |
Contact hamiltonian (6th) | 3940 | ±65.9 | |
Variational (2nd) | 8630 | ±149 | |
Contact hamiltonian (2nd) | 74 | ±1.6 | |
Contact hamiltonian (6th) | 404 | ±14.6 | |
Variational (2nd) | 972 | ±15.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadra, F.; Bravetti, A.; Seri, M. Geometric Numerical Integration of Liénard Systems via a Contact Hamiltonian Approach. Mathematics 2021, 9, 1960. https://doi.org/10.3390/math9161960
Zadra F, Bravetti A, Seri M. Geometric Numerical Integration of Liénard Systems via a Contact Hamiltonian Approach. Mathematics. 2021; 9(16):1960. https://doi.org/10.3390/math9161960
Chicago/Turabian StyleZadra, Federico, Alessandro Bravetti, and Marcello Seri. 2021. "Geometric Numerical Integration of Liénard Systems via a Contact Hamiltonian Approach" Mathematics 9, no. 16: 1960. https://doi.org/10.3390/math9161960
APA StyleZadra, F., Bravetti, A., & Seri, M. (2021). Geometric Numerical Integration of Liénard Systems via a Contact Hamiltonian Approach. Mathematics, 9(16), 1960. https://doi.org/10.3390/math9161960