On the Admissibility of the Fixed Points Set of a Mapping with Respect to Another Mapping
Abstract
:1. Introduction
2. Preliminaries
- (H1)
- h is nondecreasing,
- (H2)
- for all , where is the ith iterate of h.
- (i)
- for all ,
- (ii)
- ,
- (iii)
- h is continuous at 0.
3. Main Results
- (i)
- is μ-complete,
- (ii)
- f is μ-continuous,
- (iii)
- for all .
- (I)
- is g-admissible,
- (II)
- For all , the Picard sequence converges to a fixed point of f.
- (a)
- g is lower semi-continuous,
- (b)
- For any μ-regular sequence ,
- (I)
- is g-admissible,
- (II)
- For all , the Picard sequence converges to a fixed point of f.
4. Special Cases
- (i)
- g is lower semi-continuous,
- (ii)
- F is continuous,
- (iii)
- .
- (I)
- is g-admissible,
- (II)
- For all , the Picard sequence converges to a fixed point of f.
- (i)
- g is lower semi-continuous,
- (ii)
- F is continuous,
- (iii)
- There exists such that for all ,
- (iv)
- .
- (I)
- is g-admissible,
- (II)
- For all , the Picard sequence converges to a fixed point of f.
- (I)
- is g-admissible,
- (II)
- For all , the Picard sequence converges to a fixed point of f.
- (III)
- .
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bukatin, M.; Kopperman, R.; Matthews, S.; Pajoohesh, H. Partial metric spaces. Am. Math. Mon. 2009, 116, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S. An extensional treatment of lazy data flow deadlock. Theoret. Comput. Sci. 1995, 151, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. Fixed point theory in partial metric spaces. Anal. Univ. Vest Timis. Ser. Mat. Inform. 2008, 46, 141–160. [Google Scholar]
- Oltra, S.; Valero, O. Banach’s fixed point theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste. 2004, 36, 17–26. [Google Scholar]
- Samet, B. Existence and uniqueness of solutions to a system of functional equations and applications to partial metric spaces. Fixed Point Theory. 2013, 14, 473–481. [Google Scholar]
- Fan, Y.F.; Zhu, C.X.; Wu, Z.Q. Some φ-coupled fixed point results via modified F-control function’s concept in metric spaces and its applications. J. Comput. Appl. Math. 2019, 349, 70–81. [Google Scholar] [CrossRef]
- Imdad, M.; Khan, A.R.; Saleh, H.N.; Alfaqih, W.M. Some φ-fixed point results for (F,φ,α-ψ)-contractive type mappings with applications. Mathematics 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; O’Regan, D.; Samet, B. On the existence of fixed points that belong to the zero set of a certain function. Fixed Point Theory Appl. 2015, 2015, 152. [Google Scholar] [CrossRef] [Green Version]
- Kumrod, P.; Sintunavarat, W. A new contractive condition approach to φ-fixed point results in metric spaces and its applications. J. Comput. Appl. Math. 2017, 311, 194–204. [Google Scholar] [CrossRef]
- Roldán-López-de-Hierro, A.F.; Samet, B. φ-admissibility results via extended simulation functions. J. Fixed Point Theory Appl. 2017, 19, 1997–2015. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, F. From metric spaces to partial metric spaces. Fixed Point Theory Appl. 2013, 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Vetro, F. Fixed point belonging to the zero-set of a given function. J. Nonlinear Sci. Appl. 2018, 11, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Shatanawi, W. Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces. J. Nonlinear Funct. Anal. 2019, 2019, 13. [Google Scholar]
- Gunasekar, T.; Karpagam, S.; Zlatanov, B. On p-Cyclic Orbital M-K Contractions in a Partial Metric Space. Mathematics 2018, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Hristov, M.; Ilchev, A.; Zlatanov, B. On the Best Proximity Points for p-Cyclic Summing Contractions. Mathematics 2020, 8, 1060. [Google Scholar] [CrossRef]
- Petrusel, A. Local fixed point results for graphic contractions. J. Nonlinear Var. Anal. 2019, 3, 141–148. [Google Scholar]
- Samet, B. On the approximation of fixed points for a new class of generalized Berinde mappings. Carpathian J. Math. 2016, 32, 363–374. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for (α,ψ)-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Iterative Approximation of Fixed Points; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum. 2004, 9, 43–53. [Google Scholar]
- Al-Mezel, S.A.; Ahmad, J. Generalized fixed point results for almost (α,Fσ)-contractions with applications to Fredholm integral inclusions. Symmetry 2019, 11, 1068. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Approximating fixed points of almost convex contractions in metric spaces. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2020, 12, 11–23. [Google Scholar]
- Hammad, H.A.; De la Sen, M. Fixed-point results for a generalized almost (s,q)-Jaggi F-contraction-type on b-metric-like spaces. Mathematics 2020, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, I.; Batool, A.; Ege, O.; Sen, M. Fixed point of almost contraction in b-metric spaces. J. Math. 2020, 2020, 6. [Google Scholar] [CrossRef]
- Shatanawi, W.; Postolache, M. Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, 2013, 54. [Google Scholar] [CrossRef] [Green Version]
- Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl. Math. 1975, 6, 1455–1458. [Google Scholar]
- Choudhury, B.S.; Metiya, N.; Konar, P. Fixed point results for rational type contraction in partially ordered complex-valued metric spaces. Bull. Int. Math. Virtual. Inst. 2015, 5, 73–80. [Google Scholar]
- Fulga, A. On (ψ,ϕ)-rational contractions. Symmetry 2020, 12, 723. [Google Scholar] [CrossRef]
- Huang, H.; Singh, Y.M.; Khan, M.S.; Radenović, S. Rational type contractions in extended b-metric spaces. Symmetry 2021, 13, 614. [Google Scholar] [CrossRef]
- Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samet, B. On the Admissibility of the Fixed Points Set of a Mapping with Respect to Another Mapping. Mathematics 2021, 9, 1981. https://doi.org/10.3390/math9161981
Samet B. On the Admissibility of the Fixed Points Set of a Mapping with Respect to Another Mapping. Mathematics. 2021; 9(16):1981. https://doi.org/10.3390/math9161981
Chicago/Turabian StyleSamet, Bessem. 2021. "On the Admissibility of the Fixed Points Set of a Mapping with Respect to Another Mapping" Mathematics 9, no. 16: 1981. https://doi.org/10.3390/math9161981
APA StyleSamet, B. (2021). On the Admissibility of the Fixed Points Set of a Mapping with Respect to Another Mapping. Mathematics, 9(16), 1981. https://doi.org/10.3390/math9161981