Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology
Abstract
:1. Introduction
- It includes a transport equation for the most important group of suspended particles based on continuum-scale, semi-mechanistic modelling.
- It includes more sophisticated non-Newtonian viscosity models that couple to local haematocrit concentration in addition to shear rate in the viscosity function.
- The implementation does not require linearisation of the viscosity source term in the haematocrit transport equation, which, crucially, allows for other viscosity models to be implemented eventually.
2. Materials and Methods
2.1. Particle Migration Model
2.1.1. Spatial Variation of Collision Frequency
2.1.2. Spatial Variation of Viscosity
2.2. Rheology Models
2.2.1. Krieger–Dougherty Model
2.2.2. Quemada Model
2.2.3. Modified 5 Parameter Krieger Model
2.2.4. Yeleswarapu-Wu Model
2.2.5. Casson-Merrill Model
2.2.6. Characteristics of Rheology Models
2.3. Implementation
3. Results
3.1. Verification and Influence of Mesh Type
3.2. Length and Time Scale Dependency
3.2.1. Wall Shear Strain Scaling
3.2.2. Kinematic and Particle Migration Timescales
3.3. Variation of Rheology Model and Collision Parameter Ratio
3.4. Application to Realistic Vessel Model
4. Discussion
Limitations of the Model and Future Work
5. Software
- Haematocrit transport model, modelling the shear driven transport of red blood cells in direction of the shear gradient.
- Blood specific non-Newtonian rheology models including haematocrit dependency and shear thinning behaviour:
- –
- Krieger Dougherty (non shear-thinning);
- –
- Modified K-D [25] (shear-thinning);
- –
- Quemada;
- –
- Yeleswarapu;
- –
- Casson–Merrill;
- –
- Carreau model (not concentration dependent, Fluent implementation).
- Windkessel boundary conditions for outlets.
- Fluid-Structure-Interaction (FSI) for flexible vessel walls.
- Post-processing for WSS and established WSS derived parameters:
- –
- TAWSS, TAWSSMag;
- –
- OSI;
- –
- Transverse WSS;
- –
- Relative Residence Time;
- –
- Temporal and spatial WSS gradients.
- Viscoelastic rheology models (e.g., Oldroyd B);
- Platelet transport;
- Low density lipoprotein (LDL) transport.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LBM | Lattice Boltzmann Method |
CFD | Computational Fluid Mechanics |
ADC | Antibody Drug Conjugates |
MKM5 | Modified 5-parameter form of the Krieger model |
FVM | Finite Volume Method |
SIMPLE | Semi-Implicit Method for Pressure Linked Equations |
PISO | Pressure-Implicit with Splitting of Operators |
PIMPLE | compination of PISO and SIMPLE |
CCA | Common Carotid Artery |
WSS | Wall Shear Stress |
OSI | Oscillatory Shear Index |
TAWSS | Time Averaged WSS |
TAWSSMag | Time Averaged WSS magnitude |
RRS | Relative Residence Time |
References
- Holton, J.R. An Introduction to Dynamic Meteorology; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Secomb, T.W. Blood Flow in the Microcirculation. Annu. Rev. Fluid Mech. 2017, 49, 443–461. [Google Scholar] [CrossRef]
- Bessonov, N.; Sequeira, A.; Simakov, S.; Vassilevskii, Y.; Volpert, V. Methods of Blood Flow Modelling. Math. Model. Nat. Phenom. 2016, 11, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Tosenberger, A.; Salnikov, V.; Bessonov, N.; Babushkina, E.; Volpert, V. Particle Dynamics Methods of Blood Flow Simulations. Math. Model. Nat. Phenom. 2011, 6, 320–332. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Clausen, J.R.; Reasor, D.A.; Aidun, C.K. Parallel Performance of a Lattice-Boltzmann/Finite Element Cellular Blood Flow Solver on the IBM Blue Gene/P Architecture. Comput. Phys. Commun. 2010, 181, 1013–1020. [Google Scholar] [CrossRef]
- Ladd, A.J.C. Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation. J. Fluid Mech. 1994, 271, 285–309. [Google Scholar] [CrossRef] [Green Version]
- Ladd, A.J.C. Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results. J. Fluid Mech. 1994, 271, 311–339. [Google Scholar] [CrossRef] [Green Version]
- MacMeccan, R.M., III. Mechanistic Effects of Erythrocytes on Platelet Deposition in Coronary Thrombosis. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2007. [Google Scholar]
- Dupin, M.M.; Halliday, I.; Care, C.M.; Alboul, L.; Munn, L.L. Modeling the Flow of Dense Suspensions of Deformable Particles in Three Dimensions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 75, 066707. [Google Scholar] [CrossRef] [Green Version]
- Spendlove, J.; Xu, X.; Schenkel, T.; Seaton, M.A.; Halliday, I.; Gunn, J.P. Three-Dimensional Single Framework Multicomponent Lattice Boltzmann Equation Method for Vesicle Hydrodynamics. Phys. Fluids 2021, 33, 077110. [Google Scholar] [CrossRef]
- Burgin, K. Development of Explicit and Constitutive Lattice-Boltzmann Models for Food Product Rheology. Ph.D. Thesis, Sheffield Hallam University, Sheffield, UK, 2018. [Google Scholar]
- Leighton, D.; Acrivos, A. The Shear-Induced Migration of Particles in Concentrated Suspensions. J. Fluid Mech. 1987, 181, 415–439. [Google Scholar] [CrossRef]
- Phillips, R.J.; Armstrong, R.C.; Brown, R.A.; Graham, A.L.; Abbott, J.R. A Constitutive Equation for Concentrated Suspensions That Accounts for Shear-Induced Particle Migration. Phys. Fluids A Fluid Dyn. 1992, 4, 30–40. [Google Scholar] [CrossRef]
- Fang, Z.; Mammoli, A.A.; Brady, J.F.; Ingber, M.S.; Mondy, L.A.; Graham, A.L. Flow-Aligned Tensor Models for Suspension Flows. Int. J. Multiph. Flow 2002, 28, 137–166. [Google Scholar] [CrossRef]
- Nott, P.R.; Brady, J.F. Pressure-Driven Flow of Suspensions: Simulation and Theory. J. Fluid Mech. 1994, 275, 157–199. [Google Scholar] [CrossRef] [Green Version]
- Mansour, M.H.; Bressloff, N.W.; Shearman, C.P. Red Blood Cell Migration in Microvessels. Biorheology 2010, 47, 73–93. [Google Scholar] [CrossRef]
- Biasetti, J.; Spazzini, P.G.; Hedin, U.; Gasser, T.C. Synergy between Shear-Induced Migration and Secondary Flows on Red Blood Cells Transport in Arteries: Considerations on Oxygen Transport. J. R. Soc. Interface 2014, 11, 20140403. [Google Scholar] [CrossRef] [Green Version]
- Chebbi, R. Dynamics of Blood Flow: Modeling of Fåhraeus and Fåhraeus–Lindqvist Effects Using a Shear-Induced Red Blood Cell Migration Model. J. Biol. Phys. 2018, 44, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Quemada, D. Rheology of Concentrated Disperse Systems and Minimum Energy Dissipation Principle—I. Viscosity-Concentration Relationship. Rheol. Acta 1977, 16, 82–94. [Google Scholar] [CrossRef]
- Quemada, D. Rheology of Concentrated Disperse Systems II. a Model for Non-Newtonian Shear Viscosity in Steady Flows. Rheol. Acta 1978, 17, 632–642. [Google Scholar] [CrossRef]
- Quemada, D. Rheology of Concentrated Disperse Systems III. General Features of the Proposed Non-Newtonian model. Comparison with Experimental Data. Rheol. Acta 1978, 17, 643–653. [Google Scholar] [CrossRef]
- Das, B.; Johnson, P.C.; Popel, A.S. Effect of Nonaxisymmetric Hematocrit Distribution on Non-Newtonian Blood Flow in Small Tubes. Biorheology 1998, 35, 69–87. [Google Scholar] [CrossRef]
- Hund, S.; Kameneva, M.; Antaki, J. A Quasi-Mechanistic Mathematical Representation for Blood Viscosity. Fluids 2017, 2, 10. [Google Scholar] [CrossRef]
- Merrill, E.W.; Gilliland, E.R.; Cokelet, G.; Shin, H.; Britten, A.; Wells, R.E. Rheology of Human Blood, near and at Zero Flow: Effects of Temperature and Hematocrit Level. Biophys. J. 1963, 3, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Yeleswarapu, K.K.; Kameneva, M.V.; Rajagopal, K.R.; Antaki, J.F. The Flow of Blood in Tubes: Theory and Experiment. Mech. Res. Commun. 1998, 25, 257–262. [Google Scholar] [CrossRef]
- Brooks, D.E.; Goodwin, J.W.; Seaman, G.V. Interactions among Erythrocytes under Shear. J. Appl. Physiol. 1970, 28, 172–177. [Google Scholar] [CrossRef]
- Papir, Y.S.; Krieger, I.M. Rheological Studies on Dispersions of Uniform Colloidal Spheres: II. Dispersions in Nonaqueous Media. J. Colloid Interface Sci. 1970, 34, 126–130. [Google Scholar] [CrossRef]
- Cokelet, G.R.; Merrill, E.W.; Gilliland, E.R.; Shin, H.; Britten, A.; Wells, R.E. The Rheology of Human Blood—Measurement near and at Zero Shear Rate. Trans. Soc. Rheol. 1963, 7, 303–317. [Google Scholar] [CrossRef]
- Sequeira, A.; Janela, J. An Overview of Some Mathematical Models of Blood Rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon; Seabra Pereira, M., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 65–87. [Google Scholar] [CrossRef]
- Wu, W.; Pott, D.; Mazza, B.; Sironi, T.; Dordoni, E.; Chiastra, C.; Petrini, L.; Pennati, G.; Dubini, G.; Steinseifer, U.; et al. Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison with an In Vitro Test and Feasibility Study in a Patient-Specific Case. Ann. Biomed. Eng. 2015, 44, 590–603. [Google Scholar] [CrossRef]
- Jung, J.; Hassanein, A. Three-Phase CFD Analytical Modeling of Blood Flow. Med. Eng. Phys. 2008, 30, 91–103. [Google Scholar] [CrossRef]
- Casson, M. A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. In Rheology of Disperse Systems; Pergamon Press: Oxford, UK, 1959; pp. 84–104. [Google Scholar]
- Patankar, S.V.; Spalding, D.B. A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. Int. J. Heat Mass Transf. 1972, 15, 1787–1806. [Google Scholar] [CrossRef]
- Issa, R.I.; Gosman, A.D.; Watkins, A.P. The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme. J. Comput. Phys. 1986, 62, 66–82. [Google Scholar] [CrossRef]
- Miller, R.M.; Singh, J.P.; Morris, J.F. Suspension Flow Modeling for General Geometries. Chem. Eng. Sci. 2009, 64, 4597–4610. [Google Scholar] [CrossRef]
Quemada | MKM5 | Yeleswarapu | Casson |
---|---|---|---|
- | - | - | - |
a0: 0.06108 | - | a1: −0.02779 | - |
a1: 0.04777 | - | a2: 1.012 | - |
- | - | a3: −0.636 | - |
b0: 1.803 | b: 8.781 | b1: 0.0749 | : 1.694 |
b1: −3.68 | c: 2.824 | b2: −0.1911 | : 0.01197 |
b2: 2.608 | : 16.44 | b3: 0.1624 | - |
b3: −0.001667 | : 1296 | - | - |
- | - | k: 8.001 | - |
c0: −7.021 | : 0.1427 | - | - |
c1: 34.45 | - | - | - |
c2: −39.94 | - | - | - |
c3: 14.09 | - | - | - |
gammaDot = pow(2,0.5)*mag(symm(fvc::grad(U))); |
sourceC = fvc::laplacian(Kc*sqr(a)*sqr(H), gammaDot); |
sourceV = fvc::laplacian(Kmu*sqr(a) |
* gammaDot*sqr(H)/laminarTransport.nu(), |
laminarTransport.nu()); |
fvScalarMatrix HEqn |
( |
fvm::ddt(H) |
fvm::div(phi, H) |
- fvm::laplacian(Kc*sqr(a)*H*gammaDot, H) |
== |
sourceC |
+ sourceCnonlin |
sourceV |
); |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schenkel, T.; Halliday, I. Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology. Mathematics 2021, 9, 2100. https://doi.org/10.3390/math9172100
Schenkel T, Halliday I. Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology. Mathematics. 2021; 9(17):2100. https://doi.org/10.3390/math9172100
Chicago/Turabian StyleSchenkel, Torsten, and Ian Halliday. 2021. "Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology" Mathematics 9, no. 17: 2100. https://doi.org/10.3390/math9172100
APA StyleSchenkel, T., & Halliday, I. (2021). Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology. Mathematics, 9(17), 2100. https://doi.org/10.3390/math9172100