Optimization of Microjet Location Using Surrogate Model Coupled with Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
1.1. Regression Based Surrogate Model Optimization Techniques
1.2. Machine Learning-Based Surrogate Model Optimization Techniques
1.3. Optimization Techniques
1.4. Hybrid Design Schemes
1.5. Research Gap
2. Computational Model
2.1. Flow Configuration and Numerical Methods
- Continuum regime applies, in which Navier-Stokes equation remains valid.
- The flow is three-dimensional, incompressible, and steady-state for energy and fluid flow.
- Thermo-physical solid and fluid properties are constant, except fluid viscosity.
- Buoyancy and viscous effects are negligible.
2.2. Grid Independence Test
2.3. Validation
2.4. Computational Complexity and Implementation Cost
3. Optimization Method
3.1. Design Space, Sample Points, and Objective Function
; | ; |
; | ; |
; | ; |
3.2. Surrogate Model
3.3. Particle Swarm Optimization Algorithm (PSO)
- Identify the design and response parameters.
- Determine the constraint values of design parameters.
- Identify the fixed parameters.
- Obtain values of design parameters using a suitable sampling method.
- Calculate the values of response parameters at all design points using CFD techniques.
- Use design and response parameters to train the Radial Basis Neural Network model.
- Search for optimal design parameters using the Particle Swarm Optimization algorithm.
- The optimal design points are used in CFD analysis for verifying the result of PSO algorithm.
3.4. Parameter and Design for RBNN and PSO
4. Results and Discussion
4.1. Effect of PSO Parameters
4.2. Analysis of Variance (ANOVA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Area (m2) |
Ñ | Total number of regions with different heat flux condition |
Ɲ | Number of data sample points |
ñ | Maximum number of neurons |
P | Number of swarm particles |
Q | Volumetric flow rate (m3/s) |
T | Temperature (K) |
Velocity of particle i at time t | |
Position of particle i at time t | |
X | Input vector |
c1 | Personal acceleration coefficient |
c2 | Social acceleration coefficient |
dh | Hydraulic Diameter (m) |
Objective function thermal resistance (K/W) | |
Objective function temperature uniformity | |
h | Gaussian function |
j | Dimensions along which the vectors V and X are updated |
k | Thermal Conductivity (W/m·K) |
n | Dimensions of particles |
p | Pressure (Pa) |
q | Heat Flux (W/m2) |
Numbers generated by random function | |
w | Input weight |
Inertia coefficient | |
Velocity vector (m/s) | |
Mass flow rate (kg/s) | |
subscript | |
b | Base of Substrate |
f | Fluid |
in | Inlet |
o | Outlet |
max | Maximum |
s | Solid |
k | Different heat flux region |
c | Cross-section |
Greek symbols | |
Density (kg/m3) | |
Dimensionless Temperature | |
Dynamic viscosity (kg/m·s) | |
Normal direction vector | |
Interface | |
Perimeter (m) | |
Gaussian function spread | |
Weighted vector | |
ɨ | Maximum number of PSO iterations |
References
- Morini, G.L. Scaling effects for liquid flows in microchannels. Heat Transf. Eng. 2006, 27, 64–73. [Google Scholar] [CrossRef]
- Khan, M.N.; Karimi, M.N. Analysis of heat transfer enhancement in microchannel by varying the height of pin fins at upstream and downstream region. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 095440892199297. [Google Scholar] [CrossRef]
- Rajalingam, A.; Chakraborty, S. Effect of shape and arrangement of micro-structures in a microchannel heat sink on the thermo-hydraulic performance. Appl. Therm. Eng. 2021, 190, 116755. [Google Scholar] [CrossRef]
- Qidwai, M.O.; Hasan, M.M.; Khan, N.Z.; Ariz, M. Performance evaluation of simple radial fin design for single phase liquid flow in microchannel heat sink. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 80–92. [Google Scholar] [CrossRef]
- Qidwai, M.O.; Hasan, M.M. Effect of variation of cylindrical pin fins height on the overall performance of microchannel heat sink. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2019, 233, 980–990. [Google Scholar] [CrossRef]
- Li, Y.; Gong, L.; Xu, M.; Joshi, Y. A Review of Thermo-Hydraulic Performance of Metal Foam and Its Application as Heat Sinks for Electronics Cooling. J. Electron. Packag. 2021, 143, 030801. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Mohammadifar, M.; Ahmadian-Elmi, M. Optimal placement and sizing of heat sink attachments on a heat-generating piece for minimization of peak temperature. Thermochim. Acta 2020, 689, 178645. [Google Scholar] [CrossRef]
- Husain, A.; Ariz, M.; Al-Rawahi, N.Z.H.; Ansari, M.Z. Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink. Appl. Therm. Eng. 2016, 102, 989–1000. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ding, P. Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. Int. J. Heat Mass Transf. 2017, 113, 295–309. [Google Scholar] [CrossRef]
- Peng, M.; Chen, L.; Ji, W.; Tao, W. Numerical study on flow and heat transfer in a multi-jet microchannel heat sink. Int. J. Heat Mass Transf. 2020, 157, 119982. [Google Scholar] [CrossRef]
- Husain, A.; Al-Azri, N.A.; Al-Rawahi, N.Z.H.; Samad, A. Comparative Performance Analysis of Microjet Impingement Cooling Models with Different Spent-Flow Schemes. J. Thermophys. Heat Transf. 2016, 30, 466–472. [Google Scholar] [CrossRef]
- Han, Y.; Lau, B.L.; Zhang, H.; Zhang, X. Package-level Si-based micro-jet impingement cooling solution with multiple drainage micro-trenches. In Proceedings of the 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, 3–5 December 2014; pp. 330–334. [Google Scholar] [CrossRef]
- Han, Y.; Lau, B.L.; Zhang, X. Package-Level Microjet-Based Hotspot Cooling Solution for Microelectronic Devices. IEEE Electron Device Lett. 2015, 36, 502–504. [Google Scholar] [CrossRef]
- Deng, Z.; Shen, J.; Dai, W.; Liu, Y.; Song, Q.; Gong, W.; Ke, L.; Gong, M. Flow and thermal analysis of hybrid mini-channel and slot jet array heat sink. Appl. Therm. Eng. 2020, 171, 115063. [Google Scholar] [CrossRef]
- Samal, S.K.; Moharana, M.K. Thermo-hydraulic performance evaluation of a novel design recharging microchannel. Int. J. Therm. Sci. 2019, 135, 459–470. [Google Scholar] [CrossRef]
- Walsh, S.M.; Smith, J.P.; Browne, E.A.; Hennighausen, T.W.; Malouin, B.A. Practical Concerns for Adoption of Microjet Cooling. In ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems; American Society Of Mechanical Engineers: New York, NY, USA, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Sharma, C.S.; Tiwari, M.K.; Poulikakos, D. A simplified approach to hotspot alleviation in microprocessors. Appl. Therm. Eng. 2016, 93, 1314–1323. [Google Scholar] [CrossRef]
- Xie, G.; Li, S.; Sunden, B.; Zhang, W. Computational fluid dynamics for thermal performance of a water-cooled minichannel heat sink with different chip arrangements. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 797–810. [Google Scholar] [CrossRef]
- Lelea, D. The tangential micro-heat sink with multiple fluid inlets. Int. Commun. Heat Mass Transf. 2012, 39, 190–195. [Google Scholar] [CrossRef]
- Wiriyasart, S.; Naphon, P. Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications. Int. J. Heat Mass Transf. 2019, 140, 281–292. [Google Scholar] [CrossRef]
- Yoon, Y.; Park, S.-J.; Kim, D.R.; Lee, K.-S. Thermal performance improvement based on the partial heating position of a heat sink. Int. J. Heat Mass Transf. 2018, 124, 752–760. [Google Scholar] [CrossRef]
- Hadad, Y.; Ramakrishnan, B.; Pejman, R.; Rangarajan, S.; Chiarot, P.R.; Pattamatta, A.; Sammakia, B. Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions. Appl. Therm. Eng. 2019, 150, 720–737. [Google Scholar] [CrossRef]
- Hadad, Y.; Rangararajan, S.; Nemati, K.; Ramakrishnann, B.; Pejman, R.; Chiarot, P.R.; Sammakia, B. Performance analysis and shape optimization of a water-cooled impingement micro-channel heat sink including manifolds. Int. J. Therm. Sci. 2020, 148, 106145. [Google Scholar] [CrossRef]
- Parno, M.D.; Hemker, T.; Fowler, K.R. Applicability of surrogates to improve efficiency of particle swarm optimization for simulation-based problems. Eng. Optim. 2012, 44, 521–535. [Google Scholar] [CrossRef]
- Seo, J.W.; Afzal, A.; Kim, K.Y. Efficient multi-objective optimization of a boot-shaped rib in a cooling channel. Int. J. Therm. Sci. 2016, 106, 122–133. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Mu, Y.; Yin, B. Geometry parameters optimization for a microchannel heat sink with secondary flow channel. Int. Commun. Heat Mass Transf. 2019, 104, 89–100. [Google Scholar] [CrossRef]
- Park, M.-C.; Ma, S.-B.; Kim, K.-Y. Optimization of a Wavy Microchannel Heat Sink with Grooves. Processes 2021, 9, 373. [Google Scholar] [CrossRef]
- Kulkarni, K.; Afzal, A.; Kim, K. Multi-objective optimization of a double-layered microchannel heat sink with temperature-dependent fluid properties. Appl. Therm. Eng. 2016, 99, 262–272. [Google Scholar] [CrossRef]
- Huang, X.-L.; Ma, X.; Hu, F. Editorial: Machine Learning and Intelligent Communications. Mob. Networks Appl. 2018, 23, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Krzywanski, J. A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.-H.; Abu-Zurayk, M.; Görtz, S.; Ilic, C. Surrogate-Based Aerodynamic Shape Optimization of a Wing-Body Transport Aircraft Configuration. In AeroStruct: Enable and Learn How to Integrate Flexibility in Design; Springer: Braunschweig, Germany, 2018; pp. 257–282. [Google Scholar] [CrossRef]
- Xi, L.; Gao, J.; Xu, L.; Zhao, Z.; Li, Y. Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms. Int. J. Heat Mass Transf. 2018, 127, 1110–1123. [Google Scholar] [CrossRef]
- Singh, A. Numerical investigation on location of protrusions and dimples during slot jet impingement on a concave surface using hybrid ANN–GA. Heat Transf. 2021, 50, 1171–1197. [Google Scholar] [CrossRef]
- Shi, H.; Ma, T.; Chu, W.; Wang, Q. Optimization of inlet part of a microchannel ceramic heat exchanger using surrogate model coupled with genetic algorithm. Energy Convers. Manag. 2017, 149, 988–996. [Google Scholar] [CrossRef]
- Tan, F.; Deng, C.; Xie, H.; Yin, G. Optimizing boundary conditions for thermal analysis of the spindle system using dynamic metamodel assisted differential evolution method. Int. J. Adv. Manuf. Technol. 2019, 105, 2629–2645. [Google Scholar] [CrossRef]
- Rahmat-Samii, Y. Genetic algorithm (GA) and particle swarm optimization (PSO) in engineering eelectromagnetics. In 17th International Conference on Applied Electromagnetics and Communications; ICECom: Dubrovnik, Croatia, 2003; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, B. Optimization Design of RC Ribbed Floor System Using Eagle Strategy with Particle Swarm Optimization. Comput. Mater. Contin. 2020, 62, 365–383. [Google Scholar] [CrossRef]
- Bello-Ochende, T.; Meyer, J.P.; Ighalo, F.U. Combined Numerical Optimization and Constructal Theory for the Design of Microchannel Heat Sinks. Numer. Heat Transf. Part A Appl. 2010, 58, 882–899. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. The constructal law and the evolution of design in nature. Phys. Life Rev. 2011, 8, 209–240. [Google Scholar] [CrossRef]
- Rastogi, P.; Mahulikar, S.P. Optimization of micro-heat sink based on theory of entropy generation in laminar forced convection. Int. J. Therm. Sci. 2018, 126, 96–104. [Google Scholar] [CrossRef]
- Paniagua-Guerra, L.E.; Ramos-Alvarado, B. Efficient hybrid microjet liquid cooled heat sinks made of photopolymer resin: Thermo-fluid characteristics and entropy generation analysis. Int. J. Heat Mass Transf. 2020, 146, 118844. [Google Scholar] [CrossRef]
- Leng, C.; Wang, X.-D.; Wang, T.-H.; Yan, W.-M. Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink. Int. J. Heat Mass Transf. 2015, 84, 359–369. [Google Scholar] [CrossRef]
- Hung, T.-C.; Yan, W.-M.; Wang, X.-D.; Huang, Y.-X. Optimal design of geometric parameters of double-layered microchannel heat sinks. Int. J. Heat Mass Transf. 2012, 55, 3262–3272. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.-Y.; Zhang, X.-X.; Wang, X.-D. Optimization of geometry and flow rate distribution for double-layer microchannel heat sink. Int. J. Therm. Sci. 2014, 78, 158–168. [Google Scholar] [CrossRef]
- Cho, E.S.; Choi, J.W.; Yoon, J.S.; Kim, M.S. Experimental study on microchannel heat sinks considering mass flow distribution with non-uniform heat flux conditions. Int. J. Heat Mass Transf. 2010, 53, 2159–2168. [Google Scholar] [CrossRef]
- Abo-Zahhad, E.M.; Ookawara, S.; Radwan, A.; El-Shazly, A.H.; Elkady, M.F. Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell. Appl. Energy 2019, 253, 113538. [Google Scholar] [CrossRef]
- Muszynski, T.; Mikielewicz, D. Structural optimization of microjet array cooling system. Appl. Therm. Eng. 2017, 123, 103–110. [Google Scholar] [CrossRef]
- Qidwai, M.O.; Hasan, M.M.; Khan, N.Z.; Khan, U. Optimization of heat transfer effects in radial fin microchannel heat sink. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–13. [Google Scholar] [CrossRef]
- Wang, E.N.; Zhang, L.; Jiang, L.; Koo, J.; Maveety, J.G.; Sanchez, E.A.; Goodson, K.E.; Kenny, T.W. Micromachined jets for liquid impingement cooling of VLSI chips. J. Microelectromech. Syst. 2004, 13, 833–842. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Brus, D.J. How to compare sampling designs for mapping? Eur. J. Soil Sci. 2021, 72, 35–46. [Google Scholar] [CrossRef]
- Tümer, A.E.; Akkus, A. Application of Radial Basis Function Networks with Feature Selection for GDP Per Capita Estimation Based on Academic Parameters. Comput. Syst. Sci. Eng. 2019, 34, 145–150. [Google Scholar] [CrossRef]
- Rashedi, K.A.; Ismail, M.T.; Hamadneh, N.N.; Wadi, S.A.L.; Jaber, J.J.; Tahir, M. Application of Radial Basis Function Neural Network Coupling Particle Swarm Optimization Algorithm to Classification of Saudi Arabia Stock Returns. J. Math. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Žilinskas, A.; Gimbutienė, G. A hybrid of Bayesian approach based global search with clustering aided local refinement. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104857. [Google Scholar] [CrossRef]
(W/m·K) | (kg/m3) | (kg/m·s) | ||
---|---|---|---|---|
Water | 4181 | 0.614 | 997 | [50] |
Copper | 381 | 388 | 8978 |
Boundary Condition | Momentum | Thermal |
---|---|---|
Fluid domain | Mass flow inlet/Pressure outlet | |
Heat sink domain at y = 0 | ||
Heat sink domain at x = 0, x = W, y = H, z = 0, z = L | (adiabatic) | |
Interface between fluid and substrate | (No slip condition) |
Sample | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y | |
1 | 0.46 | 0.73 | 1.74 | 0.53 | 2.53 | 0.49 | 0.60 | 1.55 | 1.21 | 2.52 | 2.50 | 2.16 | 0.55 | 3.50 | 1.58 | 3.62 | 2.36 | 3.46 |
2 | 0.64 | 0.24 | 1.76 | 0.93 | 2.35 | 0.62 | 0.54 | 2.21 | 1.19 | 1.68 | 2.46 | 1.42 | 0.72 | 3.05 | 1.71 | 3.03 | 2.42 | 3.23 |
3 | 0.66 | 0.39 | 1.25 | 0.28 | 2.62 | 0.87 | 0.41 | 1.62 | 1.44 | 1.78 | 2.66 | 2.05 | 0.30 | 3.24 | 1.42 | 3.19 | 2.18 | 3.63 |
4 | 0.26 | 0.92 | 1.32 | 0.73 | 2.58 | 0.76 | 0.70 | 1.83 | 1.48 | 2.10 | 2.39 | 1.66 | 0.34 | 3.34 | 1.39 | 3.69 | 2.27 | 2.93 |
5 | 0.51 | 0.89 | 1.63 | 0.86 | 2.38 | 0.84 | 0.48 | 2.04 | 1.76 | 1.46 | 2.18 | 2.52 | 0.67 | 3.37 | 1.35 | 3.26 | 2.29 | 3.16 |
6 | 0.71 | 0.28 | 1.14 | 0.89 | 2.35 | 0.32 | 0.50 | 2.51 | 1.72 | 2.26 | 2.20 | 1.52 | 0.24 | 3.57 | 1.15 | 3.65 | 2.21 | 3.56 |
7 | 0.37 | 0.30 | 1.36 | 0.62 | 2.57 | 0.74 | 0.25 | 1.93 | 1.54 | 1.64 | 2.62 | 1.98 | 0.26 | 3.56 | 1.33 | 3.29 | 2.52 | 3.01 |
8 | 0.24 | 0.83 | 1.65 | 0.60 | 2.40 | 0.54 | 0.65 | 1.69 | 1.64 | 1.99 | 2.70 | 1.91 | 0.54 | 3.62 | 1.70 | 3.65 | 2.59 | 3.58 |
9 | 0.21 | 0.49 | 1.31 | 0.77 | 2.70 | 0.48 | 0.42 | 1.88 | 1.30 | 1.73 | 2.56 | 1.87 | 0.22 | 3.31 | 1.25 | 3.33 | 2.34 | 3.21 |
10 | 0.35 | 0.85 | 1.68 | 0.40 | 2.48 | 0.21 | 0.72 | 1.84 | 1.18 | 1.98 | 2.38 | 2.35 | 0.28 | 3.21 | 1.51 | 3.00 | 2.58 | 3.37 |
11 | 0.55 | 0.56 | 1.21 | 0.22 | 2.26 | 0.66 | 0.62 | 2.34 | 1.62 | 2.05 | 2.55 | 1.60 | 0.45 | 3.67 | 1.17 | 3.10 | 2.69 | 3.26 |
12 | 0.32 | 0.68 | 1.56 | 0.37 | 2.60 | 0.78 | 0.30 | 1.43 | 1.50 | 1.55 | 2.29 | 1.93 | 0.51 | 3.01 | 1.67 | 3.44 | 2.37 | 3.07 |
13 | 0.59 | 0.42 | 1.28 | 0.50 | 2.51 | 0.27 | 0.28 | 2.47 | 1.73 | 1.83 | 2.65 | 2.46 | 0.37 | 3.43 | 1.77 | 3.24 | 2.67 | 3.30 |
14 | 0.49 | 0.48 | 1.60 | 0.31 | 2.28 | 0.41 | 0.20 | 2.39 | 1.60 | 1.49 | 2.61 | 1.99 | 0.44 | 3.14 | 1.38 | 3.56 | 2.39 | 3.50 |
15 | 0.45 | 0.61 | 1.36 | 0.92 | 2.33 | 0.92 | 0.35 | 2.44 | 1.71 | 2.28 | 2.32 | 1.38 | 0.67 | 3.69 | 1.32 | 2.96 | 2.23 | 2.97 |
16 | 0.72 | 0.78 | 1.29 | 0.26 | 2.66 | 0.37 | 0.32 | 2.01 | 1.16 | 1.88 | 2.44 | 1.76 | 0.42 | 3.48 | 1.75 | 3.13 | 2.22 | 3.47 |
17 | 0.27 | 0.80 | 1.54 | 0.35 | 2.31 | 0.94 | 0.33 | 2.10 | 1.53 | 2.15 | 2.68 | 2.32 | 0.52 | 3.32 | 1.66 | 3.38 | 2.56 | 3.11 |
18 | 0.38 | 0.33 | 1.62 | 0.44 | 2.22 | 0.53 | 0.43 | 1.47 | 1.23 | 2.42 | 2.34 | 1.75 | 0.32 | 3.60 | 1.61 | 3.49 | 2.63 | 3.35 |
19 | 0.52 | 0.62 | 1.42 | 0.68 | 2.43 | 0.85 | 0.39 | 1.59 | 1.41 | 2.12 | 2.36 | 2.11 | 0.40 | 3.53 | 1.46 | 3.46 | 2.61 | 3.40 |
20 | 0.58 | 0.46 | 1.69 | 0.83 | 2.18 | 0.45 | 0.63 | 2.25 | 1.35 | 1.84 | 2.23 | 2.07 | 0.63 | 3.46 | 1.54 | 3.18 | 2.32 | 3.60 |
21 | 0.61 | 0.21 | 1.47 | 0.66 | 2.45 | 0.68 | 0.48 | 2.32 | 1.40 | 2.21 | 2.31 | 1.63 | 0.69 | 3.04 | 1.58 | 3.54 | 2.65 | 3.14 |
22 | 0.22 | 0.97 | 1.15 | 0.82 | 2.41 | 0.25 | 0.68 | 1.52 | 1.68 | 1.60 | 2.27 | 2.44 | 0.49 | 2.93 | 1.45 | 3.02 | 2.41 | 3.33 |
23 | 0.63 | 0.71 | 1.51 | 0.56 | 2.64 | 0.34 | 0.57 | 2.16 | 1.32 | 2.40 | 2.53 | 1.56 | 0.64 | 2.99 | 1.64 | 3.52 | 2.53 | 3.65 |
24 | 0.43 | 0.56 | 1.44 | 0.46 | 2.47 | 0.81 | 0.56 | 1.75 | 1.13 | 2.48 | 2.23 | 2.26 | 0.59 | 3.28 | 1.26 | 3.08 | 2.44 | 3.04 |
25 | 0.55 | 0.95 | 1.49 | 0.77 | 2.23 | 0.57 | 0.66 | 1.66 | 1.57 | 2.32 | 2.48 | 1.80 | 0.31 | 3.08 | 1.20 | 3.23 | 2.30 | 2.98 |
26 | 0.29 | 0.76 | 1.18 | 0.41 | 2.50 | 0.61 | 0.26 | 2.28 | 1.31 | 1.38 | 2.58 | 2.19 | 0.21 | 2.95 | 1.48 | 2.93 | 2.48 | 3.52 |
27 | 0.43 | 0.65 | 1.71 | 0.24 | 2.30 | 0.72 | 0.23 | 1.77 | 1.36 | 1.93 | 2.25 | 1.68 | 0.60 | 3.17 | 1.52 | 3.34 | 2.51 | 3.27 |
28 | 0.32 | 0.37 | 1.21 | 0.97 | 2.67 | 0.96 | 0.46 | 1.96 | 1.26 | 1.70 | 2.52 | 2.40 | 0.47 | 3.13 | 1.28 | 3.11 | 2.25 | 3.69 |
29 | 0.40 | 0.53 | 1.39 | 0.71 | 2.20 | 0.28 | 0.37 | 1.41 | 1.46 | 1.43 | 2.44 | 2.28 | 0.39 | 3.19 | 1.23 | 3.40 | 2.47 | 3.09 |
30 | 0.69 | 0.26 | 1.53 | 0.57 | 2.55 | 0.39 | 0.52 | 2.13 | 1.66 | 2.35 | 2.42 | 1.47 | 0.58 | 3.41 | 1.16 | 3.59 | 2.65 | 3.43 |
Factor/Parameter | Symbol | L-1 | L-2 | L-3 |
---|---|---|---|---|
Gaussian Spread | γ | 0.3 | 0.6 | 0.9 |
No. of Particles | P | 50 | 125 | 200 |
No. of Iterations | ɨ | 100 | 250 | 500 |
Run | γ | P | ɨ |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 2 | 1 | 3 |
5 | 2 | 2 | 1 |
6 | 2 | 3 | 2 |
7 | 3 | 1 | 2 |
8 | 3 | 2 | 3 |
9 | 3 | 3 | 1 |
11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 33 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y |
0.20 | 0.84 | 1.31 | 0.59 | 2.70 | 0.28 | 0.62 | 1.65 | 1.13 | 1.88 | 2.45 | 2.17 | 0.20 | 3.12 | 1.28 | 2.93 | 2.39 | 3.37 |
f1 | f2 | |
---|---|---|
Predicted Value | 6.205 | 8.019 |
Actual Value | 6.170 | 7.914 |
%e | 0.565 | 1.323 |
Run No. | Exp1 | Exp2 | Exp3 | Average | |||
---|---|---|---|---|---|---|---|
γ | P | ɨ | f1 | f1 | f1 | f1 | |
1 | 0.3 | 50 | 100 | 6.357 | 6.352 | 6.340 | 6.350 |
2 | 0.3 | 125 | 250 | 6.312 | 6.522 | 6.522 | 6.452 |
3 | 0.3 | 200 | 500 | 6.464 | 6.501 | 6.522 | 6.496 |
4 | 0.6 | 50 | 500 | 6.226 | 6.226 | 6.226 | 6.226 |
5 | 0.6 | 125 | 100 | 6.232 | 6.229 | 6.227 | 6.229 |
6 | 0.6 | 200 | 250 | 6.226 | 6.226 | 6.226 | 6.226 |
7 | 0.9 | 50 | 250 | 6.225 | 6.222 | 6.215 | 6.221 |
8 | 0.9 | 125 | 500 | 6.211 | 6.206 | 6.211 | 6.209 |
9 | 0.9 | 200 | 100 | 6.222 | 6.207 | 6.212 | 6.214 |
Source of Variation | Degrees of Freedom | Sum of Squares | Mean Square | F-Ratio | p-Value | Percentage Contribution |
---|---|---|---|---|---|---|
Gaussian spread | 2 | 0.169181 | 0.084591 | 20.53 | 0.046 | 89.10 |
No. of population | 2 | 0.006097 | 0.003049 | 0.74 | 0.575 | 3.21 |
No. of iterations | 2 | 0.006358 | 0.003179 | 0.77 | 0.564 | 3.35 |
Error | 2 | 0.008241 | 0.004121 | 4.34 | ||
Total | 8 | 0.189877 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qidwai, M.O.; Badruddin, I.A.; Khan, N.Z.; Khan, M.A.; Alshahrani, S. Optimization of Microjet Location Using Surrogate Model Coupled with Particle Swarm Optimization Algorithm. Mathematics 2021, 9, 2167. https://doi.org/10.3390/math9172167
Qidwai MO, Badruddin IA, Khan NZ, Khan MA, Alshahrani S. Optimization of Microjet Location Using Surrogate Model Coupled with Particle Swarm Optimization Algorithm. Mathematics. 2021; 9(17):2167. https://doi.org/10.3390/math9172167
Chicago/Turabian StyleQidwai, Mohammad Owais, Irfan Anjum Badruddin, Noor Zaman Khan, Mohammad Anas Khan, and Saad Alshahrani. 2021. "Optimization of Microjet Location Using Surrogate Model Coupled with Particle Swarm Optimization Algorithm" Mathematics 9, no. 17: 2167. https://doi.org/10.3390/math9172167
APA StyleQidwai, M. O., Badruddin, I. A., Khan, N. Z., Khan, M. A., & Alshahrani, S. (2021). Optimization of Microjet Location Using Surrogate Model Coupled with Particle Swarm Optimization Algorithm. Mathematics, 9(17), 2167. https://doi.org/10.3390/math9172167