A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration
Abstract
:1. Introduction
2. Modeling
2.1. CFD Model
2.1.1. Governing Equations
2.1.2. Chemical Kinetic Model
2.2. Surrogate Model
3. Simulations
3.1. CFD Simulation Specifications
3.2. Surrogate Modeling
3.3. Cost Assessment
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sikder, A.K.; Sikder, N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 2004, 112, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Vogelsanger, B. Chemical stability, compatibility and shelf life of explosives. Chimia 2004, 58, 401–408. [Google Scholar] [CrossRef]
- Maleki, N. Treatment and Biodegradation of High Explosives. Master’s Thesis, Unviversity of California, Los Angeles, CA, USA, 1994. [Google Scholar]
- Siddhamshetty, P.; Ahammad, M.; Hasan, R.; Kwon, J. Understanding wellhead ignition as a blowout response. Fuel 2019, 243, 622–629. [Google Scholar] [CrossRef]
- Yuan, Z.; Meng, L.; Gu, X.; Bai, Y.; Cui, H.; Jiang, C. Prediction of NOx emissions for coal-fired power plants with stacked-generalization ensemble method. Fuel 2021, 289, 119748. [Google Scholar] [CrossRef]
- Yang, R.; Ma, C.; Chen, G.; Cheng, Z.; Yan, B.; Mansour, M. Study on NOx emission during corn straw/sewage sludge co-combustion: Experiments and modelling. Fuel 2021, 285, 119208. [Google Scholar] [CrossRef]
- Burrows, D.L.P.E.P.; Rosenblatt, D.H.; Mitchell, W.R. Organic Explosives and Related Compounds. Environ. Health Consid. 1989. [Google Scholar] [CrossRef]
- Duijm, N.J. Hazard analysis of technologies for disposing explosive waste. J. Hazard. Mater. 2002, 90, 123–135. [Google Scholar] [CrossRef]
- Lee, S.-H.; Baek, S.-W.; Moon, I.; Park, J.-S.; Oh, M. Incineration Process of Double Base Propellant for Demilitarization. Clean Technol. 2016, 22, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Park, C.; Lee, J.; Lyu, B.; Moon, I. Finding the best operating condition in a novel process for explosive waste incineration using fluidized bed reactors. Comput. Chem. Eng. 2020, 142, 107054. [Google Scholar] [CrossRef]
- Gödde, M.; Conrad, R. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biol. Fertil. Soils 1999, 30, 33–40. [Google Scholar] [CrossRef]
- Jeon, S.W.; Yoon, W.J.; Baek, C.; Kim, Y. Minimization of hot spot in a microchannel reactor for steam reforming of methane with the stripe combustion catalyst layer. Int. J. Hydrog. Energy 2013, 38, 13982–13990. [Google Scholar] [CrossRef]
- Anastasov, A.I. A study of the influence of the operating parameters on the temperature of the hot spot in a fixed bed reactor. Chem. Eng. J. 2002, 86, 287–297. [Google Scholar] [CrossRef]
- Cho, H.; Cha, B.; Kim, S.; Ryu, J.; Kim, J.; Moon, I. Numerical analysis for particle deposit formation in reactor cyclone of residue fluidized catalytic cracking. Ind. Eng. Chem. Res. 2013, 52, 7252–7258. [Google Scholar] [CrossRef]
- Kim, J.; Lim, W.; Lee, Y.; Kim, S.; Park, S.R.; Suh, S.K.; Moon, I. Development of corrosion control document database system in crude distillation unit. Ind. Eng. Chem. Res. 2011, 50, 8272–8277. [Google Scholar] [CrossRef]
- Kim, J.; Tak, K.; Moon, I. Optimization of procurement and production planning model in refinery processes considering corrosion effect. Ind. Eng. Chem. Res. 2012, 51, 10191–10200. [Google Scholar] [CrossRef]
- Kwon, J.S.I.; Sitapure, N.; Epps, R.W.; Abolhasani, M. Cfd-based computational studies of quantum dot size control in slug flow crystallizers: Handling slug-to-slug variation. Ind. Eng. Chem. Res. 2021, 60, 4930–4941. [Google Scholar] [CrossRef]
- Crose, M.; Kwon, J.S.; Nayhouse, M.; Ni, D.; Christofides, P.D. Multiscale modeling and operation of PECVD of thin film solar cells. Chem. Eng. Sci. 2015, 136, 50–61. [Google Scholar] [CrossRef]
- Cho, S.; Kim, M.; Lyu, B.; Moon, I. Optimization of an explosive waste incinerator via an artificial neural network surrogate model. Chem. Eng. J. 2021, 407, 126659. [Google Scholar] [CrossRef]
- Kwon, H.; Oh, K.C.; Choi, Y.; Chung, Y.G.; Kim, J. Development and application of machine learning-based prediction model for distillation column. Int. J. Intell. Syst. 2021, 36, 1970–1997. [Google Scholar] [CrossRef]
- del Pecchia, M.; Fontanesi, S. A methodology to formulate multicomponent fuel surrogates to model flame propagation and ignition delay. Fuel 2020, 279, 118337. [Google Scholar] [CrossRef]
- Poon, H.M.; Pang, K.M.; Ng, H.K.; Gan, S.; Schramm, J. Development of multi-component diesel surrogate fuel models-Part II: Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations. Fuel 2016, 181, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Singla, A.; Wu, H.J.; Kwon, J.S.I. An integrated numerical and experimental framework for modeling of CTB and GD1b ganglioside binding kinetics. AIChE J. 2018, 64, 3882–3893. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Moon, I. Simulation and economic assessment of using H₂O₂ solution in wet scrubber for large marine vessels. Energy 2020, 194, 116907. [Google Scholar] [CrossRef]
- Lee, J.; Cho, H.; Moon, I.; Lubomirsky, I.; Kaplan, V.; Kim, J.; Ahn, Y. Techno-economic assessment of carbonate melt flue gas desulfurization process. Comput. Chem. Eng. 2021, 146, 107227. [Google Scholar] [CrossRef]
- Snider, D.; Guenther, C.; Dalton, J.; Williams, K. CPFD Eulerian-Lagrangian Numerical Scheme Applied to the NETL Bench-top Chemical Looping Experiment. Conference on Chemical Looping. 2010. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:CPFD+Eulerian-Lagrangian+Numerical+Scheme+Applied+to+the+NETL+Bench-top+Chemical+Looping+Experiment#0 (accessed on 19 July 2021).
- Feng, M.; Li, F.; Wang, W.; Li, J. Parametric study for MP-PIC simulation of bubbling fluidized beds with Geldart A particles. Powder Technol. 2018, 328, 215–226. [Google Scholar] [CrossRef]
- Siddhamshetty, P.; Mao, S.; Wu, K.; Kwon, J.S.-I. Multi-Size Proppant Pumping Schedule of Hydraulic Fracturing: Application to a MP-PIC Model of Unconventional Reservoir for Enhanced Gas Production. Processes 2020, 8, 570. [Google Scholar] [CrossRef]
- Wen, C.Y. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 62, 100–111. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Gidaspow, D. Multiphase Flow and Fluidization. Contin. Kinet. Theory Descr. 1994, 706. Available online: http://oreilly.com/catalog/errata.csp?isbn=9781449340377 (accessed on 19 July 2021).
- Patel, M.K.; Pericleous, K.; Cross, M. Numerical Modelling of Circulating Fluidized Beds. Int. J. Comput. Fluid Dyn. 1993, 1, 161–176. [Google Scholar] [CrossRef]
- Kim, S.H.; Nyande, B.W.; Kim, H.S.; Park, J.S.; Lee, W.J.; Oh, M. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B. J. Hazard. Mater. 2016, 308, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Ermolin, N.E.; Zarko, V.E. Investigation of the properties of a kinetic mechanism describing the chemical structure of RDX flames. I. Role of individual reactions and species, Combustion. Explos. Shock Waves 2001, 37, 123–147. [Google Scholar] [CrossRef]
- Hajduk, Z. Hardware implementation of hyperbolic tangent and sigmoid activation functions. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 563–577. [Google Scholar] [CrossRef]
- Zadeh, M.R.; Amin, S.; Khalili, D.; Singh, V.P. Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions. Water Resour. Manag. 2010, 24, 2673–2688. [Google Scholar] [CrossRef]
- Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to bayesian learning. IEEE Int. Conf. Neural Netw.-Conf. Proc. 1997, 3, 1930–1935. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
Design Conditions | ||
---|---|---|
Height (m) | 2.0 | |
Diameter (m) | 0.5 | |
Sand particle size (mm) | 0.26 | |
Mass flow rate of TNT (kg/year) | 20,000 | |
Air composition (molar fraction) | N2 80%/O2 20% | |
Drag model | Wen–Yu/Ergun | |
Simulation time (s) | 60 | |
Operating conditions | ||
Inlet gas velocity (m/s) | 1.0–3.5 | |
Temperature (K) | 400–800 | |
Pressure (bar) | 2.0–4.0 | |
Explosive waste particle size (mm) | 2.0–4.0 | |
Mass ratio of TNT | 0.25–0.75 |
Number of input variables | 5 |
Number of output variables | 1 |
Total dataset number | 300 |
Number of training datasets | 210 |
Number of validation datasets | 45 |
Number of testing datasets | 45 |
Number of hidden layers | 1 |
Number of hidden neurons | 30 |
Training method | Bayesian regularization |
Accuracy | 99.16% |
Air Inlet | ||
---|---|---|
Volume flowrate (m3/s) | 0.031–0.1085 | |
Temperature (K) | 300 | |
Pressure (bar) | 1.0 | |
Compressor | ||
Compressor type | Isentropic | |
Target pressure (bar) | 2–4 | |
Utility type | Electricity | |
Isentropic efficiency | 0.72 | |
Mechanical efficiency | 1.0 | |
Heater | ||
Target temperature (K) | 400–800 | |
Utility type | Fired heat (400 K to 1000 K) |
NOx Emission Concentration (ppm) | Inlet Gas Velocity (m/s) | Temperature (K) | Pressure (bar) |
---|---|---|---|
20 | 2.55 | 524 | 2.0 |
30 | 2.45 | 400 | 2.0 |
40 | 2.31 | 400 | 2.0 |
50 | 2.18 | 400 | 2.0 |
60 | 2.05 | 400 | 2.0 |
70 | 1.92 | 400 | 2.0 |
80 | 1.80 | 400 | 2.0 |
NOx Emission Concentration (ppm) | Capital Cost ($) | Utility Cost ($/Year) | Total Cost (10 Years, $) | Total Cost (20 Years, $) |
---|---|---|---|---|
20 | 3,122,600 | 46,885 | 3,591,445 | 4,060,291 |
30 | 2,993,070 | 43,524 | 3,428,310 | 3,863,550 |
40 | 2,942,755 | 40,607 | 3,348,824 | 3,754,892 |
50 | 2,909,551 | 40,032 | 3,309,872 | 3,710,192 |
60 | 2,879,532 | 39,617 | 3,275,700 | 3,671,867 |
70 | 2,849,405 | 39,203 | 3,241,430 | 3,633,456 |
80 | 2,819,391 | 38,789 | 3,207,276 | 3,595,161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Kang, D.; Kwon, J.S.-I.; Kim, M.; Cho, H.; Moon, I.; Kim, J. A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration. Mathematics 2021, 9, 2174. https://doi.org/10.3390/math9172174
Cho S, Kang D, Kwon JS-I, Kim M, Cho H, Moon I, Kim J. A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration. Mathematics. 2021; 9(17):2174. https://doi.org/10.3390/math9172174
Chicago/Turabian StyleCho, Sunghyun, Dongwoo Kang, Joseph Sang-Il Kwon, Minsu Kim, Hyungtae Cho, Il Moon, and Junghwan Kim. 2021. "A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration" Mathematics 9, no. 17: 2174. https://doi.org/10.3390/math9172174
APA StyleCho, S., Kang, D., Kwon, J. S. -I., Kim, M., Cho, H., Moon, I., & Kim, J. (2021). A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration. Mathematics, 9(17), 2174. https://doi.org/10.3390/math9172174