On an Anti-Torqued Vector Field on Riemannian Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. Characterizing Euclidean Spaces via Anti-Torqued Vector Fields
4. A Characterization of Einstein Manifolds
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 2015, 52, 1535–1547. [Google Scholar] [CrossRef] [Green Version]
- Fialkow, A. Conformal geodesics. Trans. Am. Math. Soc. 1939, 45, 443–473. [Google Scholar] [CrossRef]
- Ishihara, S. On infinitesimal concircular transformations. Kodai Math. Sem. Rep. 1960, 12, 45–56. [Google Scholar] [CrossRef]
- Obata, M. Conformal transformations of Riemannian manifolds. J. Differ. Geom. 1970, 4, 311–333. [Google Scholar] [CrossRef]
- Yano, K. Concircular geometry I. Concircular transformations. Proc. Imp. Acad. Tokyo 1940, 16, 195–200. [Google Scholar] [CrossRef]
- Chen, B.-Y. A simple characterization of generalized Robertson-Walker space-times. Gen. Relativ. Gravit. 2014, 46, 1833. [Google Scholar] [CrossRef] [Green Version]
- Duggal, K.L.; Sharma, R. Symmetries of Spacetimes and Riemannian Manifolds; Springer-Science + Busisness Media B. V.: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Mantica, C.A.; Molinari, L.G. Generalized Robertson-Walker space times, a survey. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1730001. [Google Scholar] [CrossRef] [Green Version]
- Takeno, H. Concircular scalar field in spherically symmetric space-times I. Tensor 1967, 20, 167–176. [Google Scholar]
- Yano, K. On torse forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo 1944, 20, 340–345. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G. Twisted Lorentzian manifolds, a characterization with torse-forming time-like unit vectors. Gen. Relativ. Gravit. 2017, 49, 51. [Google Scholar] [CrossRef] [Green Version]
- Marrero, J.C. The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 1992, 162, 77–86. [Google Scholar] [CrossRef]
- Mihai, A.; Mihai, I. Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications. J. Geom. Phys. 2013, 73, 200–208. [Google Scholar] [CrossRef]
- Mikes, J.; Rachunek, L. Torse-Forming vector fields in T-symmetric Riemannian spaces, Steps in Differential Geometry. In Proceedings of the Colloquium on Differential Geometry, Debrecen, Hungary, 25–30 July 2000; pp. 219–229. [Google Scholar]
- Chen, B.-Y. Pseudo-Riemannian Geometry, d-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Deshmukh, S.; Turki, N.B.; Vîlcu, G.-E. A note on static spaces. Results Phys. 2021, 104519. [Google Scholar] [CrossRef]
- Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
- Chen, B.-Y. Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujev. J. Math. 2017, 41, 93–103. [Google Scholar]
- Chen, B.-Y. Classification of torqed vector fields and its applications to Ricci solitons. Kragujev. J. Math. 2017, 41, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.; Turki, N.; Alodan, H. On the differential equation governing torqued vector fields on a Riemannian manifold. Symmetry 2020, 12, 1941. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: London, UK, 1983. [Google Scholar]
- Petersen, P. Riemannian Geometry; Graduate Texts in Mathematics-171; Springer: New York, NY, USA, 1997. [Google Scholar]
- Shaikh, A.A.; Hui, S.K. On extended generalized ϕ-recurrent β-Kenmotsu manifolds. Publ. de L’Inst. Math. New Ser. 2011, 89, 77–88. [Google Scholar]
- Pigola, S.; Rimoldi, M.; Setti, A.G. Remarks on non-compact gradient Ricci solitons. Math. Z. 2011, 268, 777–790. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.E.; Marsden, J.E. Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc. 1974, 80, 479–484. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshmukh, S.; Al-Dayel, I.; Naik, D.M. On an Anti-Torqued Vector Field on Riemannian Manifolds. Mathematics 2021, 9, 2201. https://doi.org/10.3390/math9182201
Deshmukh S, Al-Dayel I, Naik DM. On an Anti-Torqued Vector Field on Riemannian Manifolds. Mathematics. 2021; 9(18):2201. https://doi.org/10.3390/math9182201
Chicago/Turabian StyleDeshmukh, Sharief, Ibrahim Al-Dayel, and Devaraja Mallesha Naik. 2021. "On an Anti-Torqued Vector Field on Riemannian Manifolds" Mathematics 9, no. 18: 2201. https://doi.org/10.3390/math9182201
APA StyleDeshmukh, S., Al-Dayel, I., & Naik, D. M. (2021). On an Anti-Torqued Vector Field on Riemannian Manifolds. Mathematics, 9(18), 2201. https://doi.org/10.3390/math9182201