Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations
Abstract
:1. Introduction
2. Main Concept of the Homotopy Perturbation Method
3. Convergence of HPM for Nonlinear Differential and Integral Equations
- (i)
- (ii)
- (iii)
- (i)
- By using the induction on j, for j = 1, we can write
- (ii)
- Using (i), we have
- (iii)
- Because and then that is, □
- (i)
- (ii)
- (i)
- Since we can state the following:
- (ii)
- Expanding using the Maclaurin series with respect to s yields
- Extension to nonlinear integro-differential equations
4. Estimation of Error
5. Applications
- Integral equations
- Integro-differential equations
- First-order NIDE
- Fourth-order NIDE
- Differential equations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mousaa, M.M.; Ragab, S.F. Application of the homotopy perturbation method to linear and nonlinear schrödinger equations. Z. Für Nat. A 2008, 63, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Mousa, M.M.; Kaltayev, A. Application of the homotopy perturbation method to a magneto-elastico-viscous fluid along a semi-infinite plate. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 1113–1120. [Google Scholar] [CrossRef]
- Barman, H.K.; Seadawy, A.R.; Akbar, M.A.; Baleanu, D. Competent closed form soliton solutions to the Riemann wave equation and the Novikov-Veselov equation. Results Phys. 2020, 17, 103131. [Google Scholar] [CrossRef]
- Ma, W.-X.; Mousa, M.M.; Ali, M.R. Application of a new hybrid method for solving singular fractional Lane–Emden-type equations in astrophysics. Mod. Phys. Lett. B 2020, 34, 2050049. [Google Scholar] [CrossRef]
- Zhao, W.; Maitama, S. Beyond sumudu transform and natural transform: 𝕁-transform properties and applications. J. Appl. Anal. Comput. 2020, 10, 1223–1241. [Google Scholar] [CrossRef]
- Khalouta, A.; KADEM, A. Solutions of nonlinear time-fractional wave-like equations with variable coefficients in the form of mittag-leffler functions. Thai J. Math. 2020, 18, 411–424. [Google Scholar]
- Ziane, D.; Belgacem, R.; Bokhari, A. A new modified Adomian decomposition method for nonlinear partial differential equations. Open J. Math. Anal. 2019, 3, 81–90. [Google Scholar] [CrossRef]
- Maitama, S.; Zhao, W. New integral transform: Shehu transform a generalization of sumudu and laplace transform for solving differential equations. Int. J. Anal. Appl. 2019, 17, 167–190. [Google Scholar] [CrossRef] [Green Version]
- Maitama, S.; Zhao, W. New Laplace-type integral transform for solving steady heat-transfer problem. Therm. Sci. 2021, 25, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Samra, G.S.; Singh, P. Approximate solution for fractional attractor one-dimensional Keller-Segel equations using homotopy perturbation sumudu transform method. Nonlinear Eng. 2020, 9, 370–381. [Google Scholar] [CrossRef]
- Mousa, M.M.; Kaltayev, A. Application of he’s homotopy perturbation method for solving fractional Fokker-Planck equationss. Z. Für Nat. A 2009, 64, 788–794. [Google Scholar] [CrossRef]
- Chakraverty, S.; Mahato, N.R.; Karunakar, P.; Rao, T.D. Homotopy perturbation method. In Advanced Numerical and Semi-Analytical Methods for Differential Equations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 131–139. [Google Scholar]
- He, J.-H.; El-Dib, Y.O. Homotopy perturbation method for Fangzhu oscillator. J. Math. Chem. 2020, 58, 2245–2253. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.-H.; Islam, A. The homotopy perturbation method for fractional differential equations: Part 1 Mohand transform. Int. J. Numer. Methods Heat Fluid Flow 2021, in press. [Google Scholar] [CrossRef]
- Javeed, S.; Baleanu, D.; Waheed, A.; Khan, M.S.; Affan, H. Analysis of homotopy perturbation method for solving fractional order differential equations. Mathematics 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Khan, A.; Ali, I.; Al-Qurashi, M.; Khan, H.; Shah, R.; Baleanu, D. An efficient analytical approach for the solution of certain fractional-order dynamical systems. Energies 2020, 13, 2725. [Google Scholar] [CrossRef]
- Harir, A.; Melliani, S.; El Harfi, H.; Chadli, L.S. Variational iteration method and differential transformation method for solving the SEIR epidemic model. Int. J. Differ. Equ. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Bekela, A.S.; Belachew, M.T.; Wole, G.A. A numerical method using Laplace-like transform and variational theory for solving time-fractional nonlinear partial differential equations with proportional delay. Adv. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Bokhari, A.; Baleanu, D.; Belgacem, R. Application of Shehu transform to Atangana-Baleanu derivatives. J. Math. Comput. Sci. 2019, 20, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Farooq, U.; Shah, R.; Baleanu, D.; Kumam, P.; Arif, M. Analytical solutions of (2+time fractional order) dimensional physical models, using modified decomposition method. Appl. Sci. 2019, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Abuasad, S.; Hashim, I.; Karim, S.A.A. Modified fractional reduced differential transform method for the solution of multiterm time-fractional diffusion equations. Adv. Math. Phys. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Mousa, M.M.; Ma, W.-X. A conservative numerical scheme for capturing interactions of optical solitons in a 2D coupled nonlinear Schrödinger system. Indian J. Phys. 2021, 1–11. [Google Scholar] [CrossRef]
- Mousa, M.M.; Agarwal, P.; Alsharari, F.; Momani, S. Capturing of solitons collisions and reflections in nonlinear Schrödinger type equations by a conservative scheme based on MOL. Adv. Differ. Equ. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Lusternik, L.A. Some issues of nonlinear functional analysis. Russ. Math. Surv. 1956, 6, 145–168. [Google Scholar]
- Sidorov, N.A. Irkutsk State University The role of a priori estimates in the method of non-local continuation of solution by parameter. Bull. Irkutsk. State Univ. Ser. Math. 2020, 34, 67–76. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Dreglea, A.; He, J.; Avazzadeh, Z.; Suleman, M.; Araghi, M.A.F.; Sidorov, D.N.; Sidorov, N. Error estimation of the homotopy perturbation method to solve second kind volterra integral equations with piecewise smooth kernels: Application of the CADNA library. Symmetry 2020, 12, 1730. [Google Scholar] [CrossRef]
- Sidorov, D.N. Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations. Differ. Equ. 2014, 50, 1217–1224. [Google Scholar] [CrossRef]
- Adams, P.; Smith, K.; Výborný, R. Introduction to Mathematics with Maple; World Scientific Publishing Company: Singapore, 2004. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, P.; Manzhirov, A.V. Handbook of Integral Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Avudainayagam, A.; Vani, C. Wavelet–Galerkin method for integro–differential equations. Appl. Numer. Math. 2000, 32, 247–254. [Google Scholar] [CrossRef]
- Gorguis, A. A comparison between Cole–Hopf transformation and the decomposition method for solving Burgers’ equations. Appl. Math. Comput. 2005, 173, 126–136. [Google Scholar] [CrossRef]
n | ||
---|---|---|
5 | 1.233325816 × 10−9 | 0.109693440 |
10 | 6.276712343 × 10−19 | 0.001123261 |
15 | 2.600890581 × 10−28 | 0.000011502 |
20 | 9.799762563 × 10−38 | 1.177824343 × 10−7 |
0.0 | 0.0 | 0.0 |
0.1 | 0.1001670006 | 0.1001670007 |
0.2 | 0.2013440870 | 0.2013440870 |
0.3 | 0.3045825026 | 0.3045825023 |
0.4 | 0.4110194227 | 0.4110194110 |
0.5 | 0.5219305152 | 0.5219303730 |
0.6 | 0.6387957040 | 0.6387946203 |
0.7 | 0.7633858019 | 0.7633797217 |
0.8 | 0.8978815369 | 0.8978542000 |
0.9 | 1.045043135 | 1.044939149 |
1.0 | 1.208460241 | 1.208112875 |
0.0 | 1.0 | 1.0 |
0.1 | 1.105171 | 1.105187 |
0.2 | 1.221403 | 1.221458 |
0.3 | 1.349859 | 1.349964 |
0.4 | 1.491825 | 1.491975 |
0.5 | 1.648721 | 1.648900 |
0.6 | 1.822119 | 1.822301 |
0.7 | 2.013753 | 2.013907 |
0.8 | 2.225541 | 2.225641 |
0.9 | 2.459603 | 2.459639 |
1.0 | 2.718282 | 2.718285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, M.M.; Alsharari, F. Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations. Mathematics 2021, 9, 2244. https://doi.org/10.3390/math9182244
Mousa MM, Alsharari F. Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations. Mathematics. 2021; 9(18):2244. https://doi.org/10.3390/math9182244
Chicago/Turabian StyleMousa, Mohamed M., and Fahad Alsharari. 2021. "Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations" Mathematics 9, no. 18: 2244. https://doi.org/10.3390/math9182244
APA StyleMousa, M. M., & Alsharari, F. (2021). Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations. Mathematics, 9(18), 2244. https://doi.org/10.3390/math9182244