Prediction of Kerf Width in Laser Cutting of Thin Non-Oriented Electrical Steel Sheets Using Convolutional Neural Network
Abstract
:1. Introduction
2. Experiment and Model
2.1. Experimental Setup
2.2. Convolutional Neural Network Model
2.3. Deep Neural Network Model
2.4. Extreme Learning Machine Model
3. Results and Discussion
3.1. Optimal CNN Model through k-Fold Cross-Validation
3.2. Comparison with Other ANN Models
4. Conclusions
- (1)
- The k-fold cross-validation method was employed to improve the generalization ability of the developed CNN model. Moreover, for k = 10, the average MAPE of the validation dataset had the lowest value of 7.51% compared to other k values.
- (2)
- In comparison with other ANN methods such as DNN and ELM, the results clearly indicated that the CNN approach developed in this study exhibited improved performance and achieved the highest prediction accuracy of 4.76% in terms of MAPE for the same final test dataset. Therefore, the developed CNN with k-fold cross-validation is effective for kerf width prediction of the given laser cutting process.
- (3)
- The relative importance of the given three input parameters was analyzed using a random forest algorithm. It was found that the most important variable for kerf width is the cutting speed, followed by the pulse frequency and the laser power.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oda, Y.; Kohno, M.; Honda, A. Recent development of non-oriented electrical steel sheet for automobile electrical devices. J. Magn. Magn. Mater. 2008, 320, 2430–2435. [Google Scholar] [CrossRef]
- Brettschneider, C. High precision laser cutting of electrical steel. PhotonicsViews 2019, 16, 51–53. [Google Scholar]
- Park, J.S.; Park, J.T. Effect of Stress Relief Annealing Temperature and Atmosphere on the Microstructure and Magnetic Properties of Non-oriented Electrical Steels. In Proceedings of the 2016 6th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 November–1 December 2016; pp. 288–292. [Google Scholar]
- Rygal, R.; Moses, A.; Derebasi, N.; Schneider, J.; Schoppa, A. Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical steels. J. Magn. Magn. Mater. 2000, 215, 687–689. [Google Scholar] [CrossRef]
- Schoppa, A.; Schneider, J.; Wuppermann, C.D. Influence of the manufacturing process on the magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 2000, 215, 74–78. [Google Scholar] [CrossRef]
- Senda, K.; Ishida, M.; Nakasu, Y.; Yagi, M. Influence of shearing process on domain structure and magnetic properties of non-oriented electrical steel. J. Magn. Magn. Mater. 2006, 304, e513–e515. [Google Scholar] [CrossRef]
- Fujisaki, K.; Hirayama, R.; Kawachi, T.; Satou, S.; Kaidou, C.; Yabumoto, M.; Kubota, T. Motor core iron loss analysis evaluating shrink fitting and stamping by finite-element method. IEEE Trans. Magn. 2007, 43, 1950–1954. [Google Scholar] [CrossRef]
- Salvador, L. Influence of Cutting Process on Magnetic Properties of Electrical Steel. Master’s Thesis, Aalto University, Helsinki, Finland, 2016. [Google Scholar]
- Loisos, G.; Moses, A.J. Effect of mechanical and Nd: YAG laser cutting on magnetic flux distribution near the cut edge of non-oriented steels. J. Mater. Process. Technol. 2005, 161, 151–155. [Google Scholar] [CrossRef]
- Siebert, R.; Schneider, J.; Beyer, E. Laser cutting and mechanical cutting of electrical steels and its effect on the magnetic properties. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Emura, M.; Landgraf, F.J.G.; Ross, W.; Barreta, J.R. The influence of cutting technique on the magnetic properties of electrical steels. J. Magn. Magn. Mater. 2003, 254, 358–360. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Multi-objective optimization of laser beam cutting process. Opt. Laser Technol. 2008, 40, 562–570. [Google Scholar] [CrossRef]
- Yilbas, B.S. Laser cutting quality assessment and thermal efficiency analysis. J. Mater. Process. Technol. 2004, 155, 2106–2115. [Google Scholar] [CrossRef]
- Hascalik, A.; Ay, M. CO2 laser cut quality of Inconel 718 nickel–based superalloy. Opt. Laser Technol. 2013, 48, 554–564. [Google Scholar] [CrossRef]
- Hossain, A.; Hossain, A.; Nukman, Y.; Hassan, M.A.; Harizam, M.Z.; Sifullah, A.M.; Parandoush, P. A fuzzy logic-based prediction model for kerf width in laser beam machining. Mater. Manuf. Process. 2016, 31, 679–684. [Google Scholar] [CrossRef]
- Pandey, A.K.; Dubey, A.K. Fuzzy expert system for prediction of kerf qualities in pulsed laser cutting of titanium alloy sheet. Mach. Sci. Technol. 2013, 17, 545–574. [Google Scholar] [CrossRef]
- Klancnik, S.; Begic-Hajdarevic, D.; Paulic, M.; Ficko, M.; Cekic, A.; Husic, M.C. Prediction of laser cut quality for Tungsten alloy using the neural network method. Stroj. Vestn.—J. Mech. Eng. 2015, 61, 714–720. [Google Scholar] [CrossRef]
- Ghamisi, P.; Chen, Y.; Zhu, X.X. A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Nogueira, R.F.; de Alencar Lotufo, R.; Machado, R.C. Fingerprint liveness detection using convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1206–1213. [Google Scholar] [CrossRef]
- Labati, R.D.; Munoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 2015, 63, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Acquarelli, J.; van Laarhoven, T.; Gerretzen, J.; Tran, T.N.; Buydens, L.M.; Marchiori, E. Convolutional neural networks for vibrational spectroscopic data analysis. Anal. Chim. Acta 2017, 954, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Malek, S.; Melgani, F.; Bazi, Y. One-dimensional convolutional neural networks for spectroscopic signal regression. J. Chemom. 2018, 32, e2977. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network. Sensors 2019, 19, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media: Sevastopol, CA, USA, 2019. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Picard, R.R.; Cook, R.D. Cross-validation of regression models. J. Am. Stat. Assoc. 1984, 79, 575–583. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Wavelength (nm) | 1064 |
Laser power (W) | 9.4–14.07 |
Pulse frequency (kHz) | 20–60 |
Pulse width (ns) | 100 |
Focal length (mm) | 127 |
Spot diameter (µm) | 40 |
Cutting speed (mm/s) | 0.1–0.5 |
No | Laser Power (W) | Pulse Frequency (kHz) | Cutting Speed (mm/s) | Kerf Width in Experiment (µm) |
---|---|---|---|---|
1 | 9.40 | 20 | 0.1 | 139.7 |
2 | 11.67 | 20 | 0.1 | 149.5 |
3 | 14.07 | 20 | 0.1 | 161.7 |
4 | 9.40 | 40 | 0.1 | 23.2 |
5 | 11.67 | 40 | 0.1 | 27.8 |
6 | 11.67 | 60 | 0.1 | 18.8 |
7 | 14.07 | 60 | 0.1 | 175.4 |
8 | 11.67 | 20 | 0.2 | 34.6 |
9 | 14.07 | 20 | 0.2 | 35.7 |
10 | 11.67 | 40 | 0.2 | 548.3 |
11 | 14.07 | 40 | 0.2 | 278.3 |
12 | 11.67 | 60 | 0.2 | 486.6 |
13 | 14.07 | 60 | 0.2 | 662.3 |
14 | 9.40 | 20 | 0.3 | 85.5 |
15 | 14.07 | 20 | 0.3 | 100.9 |
16 | 9.40 | 40 | 0.3 | 44.8 |
17 | 11.67 | 40 | 0.3 | 30.0 |
18 | 14.07 | 40 | 0.3 | 40.4 |
19 | 14.07 | 60 | 0.3 | 103.5 |
20 | 9.40 | 20 | 0.4 | 65.7 |
21 | 11.67 | 20 | 0.4 | 144.4 |
22 | 14.07 | 20 | 0.4 | 106.0 |
23 | 9.40 | 40 | 0.4 | 67.4 |
24 | 14.07 | 40 | 0.4 | 494.1 |
25 | 11.67 | 60 | 0.4 | 649.0 |
26 | 14.07 | 60 | 0.4 | 675.0 |
27 | 9.40 | 20 | 0.5 | 160.4 |
28 | 11.67 | 20 | 0.5 | 190.2 |
29 | 11.67 | 40 | 0.5 | 106.0 |
30 | 14.07 | 40 | 0.5 | 87.0 |
31 | 11.67 | 60 | 0.5 | 150.1 |
32 | 14.07 | 60 | 0.5 | 122.1 |
33 | 9.40 | 20 | 0.2 | 50.8 |
34 | 9.40 | 40 | 0.2 | 283.5 |
35 | 11.67 | 20 | 0.3 | 74.8 |
36 | 14.07 | 40 | 0.1 | 204.3 |
37 | 9.40 | 40 | 0.5 | 98.8 |
38 | 11.67 | 40 | 0.4 | 64.2 |
39 | 11.67 | 60 | 0.3 | 623.9 |
40 | 14.07 | 20 | 0.5 | 74.2 |
P (W) | f (kHz) | v (mm/s) | Kerf Width in Experiment (μm) | Predicted Kerf Width (µm) | MAPE (%) | ||||
---|---|---|---|---|---|---|---|---|---|
ELM | DNN | CNN | ELM | DNN | CNN | ||||
9.40 | 40 | 0.5 | 98.8 | 93.0 | 92.7 | 99.0 | 5.82 | 6.17 | 0.20 |
11.67 | 40 | 0.4 | 64.2 | 84.4 | 49.1 | 74.6 | 31.43 | 23.52 | 16.20 |
11.67 | 60 | 0.3 | 623.9 | 714.1 | 564.0 | 626.0 | 14.47 | 9.60 | 0.34 |
14.07 | 20 | 0.5 | 74.2 | 81.0 | 95.3 | 72.5 | 9.24 | 28.44 | 2.29 |
Average | |||||||||
15.24 | 16.93 | 4.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.-T.; Ho, J.-R.; Tung, P.-C.; Lin, C.-K. Prediction of Kerf Width in Laser Cutting of Thin Non-Oriented Electrical Steel Sheets Using Convolutional Neural Network. Mathematics 2021, 9, 2261. https://doi.org/10.3390/math9182261
Nguyen D-T, Ho J-R, Tung P-C, Lin C-K. Prediction of Kerf Width in Laser Cutting of Thin Non-Oriented Electrical Steel Sheets Using Convolutional Neural Network. Mathematics. 2021; 9(18):2261. https://doi.org/10.3390/math9182261
Chicago/Turabian StyleNguyen, Dinh-Tu, Jeng-Rong Ho, Pi-Cheng Tung, and Chih-Kuang Lin. 2021. "Prediction of Kerf Width in Laser Cutting of Thin Non-Oriented Electrical Steel Sheets Using Convolutional Neural Network" Mathematics 9, no. 18: 2261. https://doi.org/10.3390/math9182261
APA StyleNguyen, D. -T., Ho, J. -R., Tung, P. -C., & Lin, C. -K. (2021). Prediction of Kerf Width in Laser Cutting of Thin Non-Oriented Electrical Steel Sheets Using Convolutional Neural Network. Mathematics, 9(18), 2261. https://doi.org/10.3390/math9182261