Review of Metaheuristics Inspired from the Animal Kingdom
Abstract
:1. Introduction
2. Classification and Categorization
3. Source of Inspiration
3.1. Vertebrates
3.1.1. Birds
Mating Behavior
Food Search
Movement
3.1.2. Mammals
Food search
Social Behavior
3.1.3. Other Vertebrates
3.1.4. General
3.2. Invertebrates
3.2.1. Insects
Hymenoptera
- Bees
- Ants
Diptera
- Flies
- Mosquitoes
Lepidoptera
- Butterflies
- Moths
Ortoptera
Other Insects
- Hunting
- Mixed behavior
3.2.2. Other Invertebrates
- Arachnids
- Crustacea
- Annelid worms
- Tunicata
Algorithm | Source Code | Modifications and Improvements | Applications |
---|---|---|---|
Earthwork Optimization Algorithm (EWA) [379] | (MATLAB—author source) https://in.mathworks.com/matlabcentral/fileexchange/53479-earthworm-optimization-algorithm-ewa?s_tid=FX_rc3_behav, accessed on 15 March 2021 |
|
|
Krill Herd Algorithm (KHA) [377] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/55486-krill-herd-algorithm, accessed on 9 February 2020 |
| |
Social Spider Optimization (SSO) [265] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/46942-a-swarm-optimization-algorithm-inspired-in-the-behavior-of-the-social-spider, accessed on 26 April 2020 | ||
Social Spider Algorithm (SSA) [375] | (MATLAB, C++, Python—author source) https://github.com/James-Yu/SocialSpiderAlgorithm, accessed on 18 January 2020 |
| |
Tunicate Swarm Algorithm (TSA) [380] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/75182-tunicate-swarm-algorithm-tsa, accessed on 17 July 2021 |
|
4. The Exploration–Exploitation Balance
5. Algorithm Selection
6. General Issues
- The biological terminology used is complex and, in many cases, difficult to understand, which conceals that, in the implementation phase, the mechanisms used are simple and well-known and are, in fact, variations on the same theme; the work of [437] tries to shed some light onto the computational mechanisms used by the best-known metaheuristics. Also, in terms of the real-world mechanisms modeled, some of the algorithms are ‘weak inspired’, in the sense that the so-called modeled behavior is not met in the species that give the name of the algorithm [438];
- After overcoming the terminology barrier, upon a closer analysis, some of the so-called new algorithms not only do not have any novel aspect, but the papers describing them are incomplete or an implementation following the pseudo-code identifies other problems. In this regard, the work of Nguyen Van Thieu is worth mentioning, wherein he strides to implement these in a comprehensive python module with metaheuristics [438], and identified some of these dummy metaheuristics;
- Although some algorithms are inspired from the same source, the mechanisms modeled are different. For example, for Pidgeon inspired approaches, two algorithms were identified: PIO, which focuses on the movement of an individual from point A to point B and POA, which focuses on the movement of pigeons, taking into account the social interactions;
- There are multiple benchmark libraries that can be used and, in the majority of cases, the problems chosen by the authors to test the performance are very varied; thus, a comparison of performance between multiple algorithms based on the published literature is not always possible. The work of [439] presents the winners of some well-known competitions where standard benchmarks are used. In addition, as publishing bad results is sometimes discouraged, only the problems with the best results are chosen. In [2], it was shown that, in the comparison phase, the number of algorithms, the number of problems tested and the statistics used can lead to wrong conclusions if not properly selected;
- In an attempt to create high performance algorithms, the tendency is to include multiple strategies that have proven efficient over the years, e.g., self-adaptation, chaos, local search, etc. However, this has led to over-complicated methods that do not always show a direct correlation between complexity and performance. For example, for two winners of the CEC2016 competition, simpler versions (without operators biased towards 0) proved competitive against a large number of metaheuristics and even performed better for problems with solutions not close to 0 [435].
- Performance measurement: the issue of performance is a complex aspect, especially taking into account that different metrics can be used. Although the tendency is to see performance as the capability to provide the best solution, other aspects such as complexity, computational resources consumed and stability can be employed. Moreover, how the best solution is identified is usually based on experiments with mean and standard deviation as validation criteria [440], and a standardization of all these metrics and criteria of evolution can be a further step in the development of a general framework for metaheuristics.
- Performance analysis and improvement: identifying the main mechanisms that make a particular algorithm efficient for a particular class or group of problems. In this context, a better understanding of the exploration–exploitation balance, convergence analysis, diversity and the strategies that focus these aspects to a direction or another would help in providing a better foundation for the improvement of existing variants and creating new ones. In this regard, some studies focusing on these aspects were published (examples include: convergence analysis [441,442,443,444], fitness landscape analysis [445,446,447,448], exploration–exploitation [449,450,451]). However, additional research is required to reach field maturity.
- Algorithm selection: procedures and algorithms that can automatically select the best metaheuristic for a specific problem or group of problems. A wide level of applicability is one of the reasons for the popularity of metaheuristics. Thus, better strategies that can allow an easy identification of suitable algorithms are necessary. In this context, in the last few years, various methodologies and strategies to compare and select algorithms were proposed [2,411,433] and recommender systems were developed [409]. However, they are not widely accepted and applied and additional research in simplifying and generalizing these aspects is required.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salcedo-Sanz, S. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures. Phys. Rep. 2016, 655, 1–70. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2018, 52, 2191–2233. [Google Scholar] [CrossRef] [Green Version]
- Nabaei, A.; Hamian, M.; Parsaei, M.R.; Safdari, R.; Samad-Soltani, T.; Zarrabi, H.; Ghassemi, A. Topologies and performance of intelligent algorithms: A comprehensive review. Artif. Intell. Rev. 2016, 49, 79–103. [Google Scholar] [CrossRef]
- Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello, C.A.C.; Herrera, F. Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Lam, A.; Li, V.O.K. Chemical-Reaction-Inspired Metaheuristic for Optimization. IEEE Trans. Evol. Comput. 2009, 14, 381–399. [Google Scholar] [CrossRef] [Green Version]
- Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No Free Lunch Theorem: A Review. In Approximation and Optimization: Algorithms, Complexity and Applications; Demetriou, I.C., Pardalos, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–82. [Google Scholar]
- Hosseini, S.; Al Khaled, A. A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation in engineering domain and directions for future research. Appl. Soft Comput. 2014, 24, 1078–1094. [Google Scholar] [CrossRef]
- Doğan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145. [Google Scholar] [CrossRef]
- Stegherr, H.; Heider, M.; Hähner, J. Classifying Metaheuristics: Towards a unified multi-level classification system. Nat. Comput. 2020, 1–17. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]
- Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated Local Search. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2003; pp. 320–353. [Google Scholar]
- Turky, A.M.; Abdullah, S. A multi-population electromagnetic algorithm for dynamic optimisation problems. Appl. Soft Comput. 2014, 22, 474–482. [Google Scholar] [CrossRef]
- Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. Nicso 2010 Nat. Inspired Coop. Strateg. Optim. 2010, 284, 65–74. [Google Scholar]
- Ahandani, M.A. A diversified shuffled frog leaping: An application for parameter identification. Appl. Math. Comput. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Zheng, Y.-J. Water wave optimization: A new nature-inspired metaheuristic. Comput. Oper. Res. 2015, 55, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moghdani, R.; Salimifard, K. Volleyball Premier League Algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 2020, 12, 897–939. [Google Scholar] [CrossRef]
- Fausto, F.; Reyna-Orta, A.; Cuevas, E.; Andrade, G.; Perez-Cisneros, M. From ants to whales: Metaheuristics for all tastes. Artif. Intell. Rev. 2019, 53, 753–810. [Google Scholar] [CrossRef]
- Brabazon, A.; McGarraghy, S. Formal Models of Foraging. In Foraging-Inspired Optimisation Algorithms; Brabazon, A., McGarraghy, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–44. [Google Scholar]
- Zhu, G.-Y.; Zhang, W.-B. Optimal foraging algorithm for global optimization. Appl. Soft Comput. 2017, 51, 294–313. [Google Scholar] [CrossRef]
- Brabazon, A.; Cui, W.; O’Neill, M. The raven roosting optimisation algorithm. Soft Comput. 2015, 20, 525–545. [Google Scholar] [CrossRef]
- Brabazon, A.; McGarraghy, S. Introduction to Foraging-Inspired Algorithms. In Foraging-Inspired Optimisation Algorithms; Brabazon, A., McGarraghy, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 87–101. [Google Scholar]
- Askarzadeh, A. Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1213–1228. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, Coimbatore, India, 9–11 December 2009. [Google Scholar]
- Wang, L.; Yin, Y.; Zhong, Y. Cuckoo search with varied scaling factor. Front. Comput. Sci. 2015, 9, 623–635. [Google Scholar] [CrossRef]
- Chawla, M.; Duhan, M. Levy Flights in Metaheuristics Optimization Algorithms—A Review. Appl. Artif. Intell. 2018, 32, 802–821. [Google Scholar] [CrossRef]
- Rakhshani, H.; Rahati, A. Snap-drift cuckoo search: A novel cuckoo search optimization algorithm. Appl. Soft Comput. 2017, 52, 771–794. [Google Scholar] [CrossRef]
- Joshi, A.; Kulkarni, O.; Kakandikar, G.; Nandedkar, V. Cuckoo Search Optimization—A Review. Mater. Today Proc. 2017, 4, 7262–7269. [Google Scholar] [CrossRef]
- Rajabioun, R. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [Google Scholar] [CrossRef]
- Moosavi, S.H.S.; Bardsiri, V.K. Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 2017, 60, 1–15. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Eagle strategy using Levy walk and firefly algorithms for stochastic optimization. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–111. [Google Scholar]
- Yang, X.-S. Nature-inspired metaheuristic algorithms; Luniver press: Bristol, UK, 2010. [Google Scholar]
- Yang, X.-S.; Deb, S. Two-stage eagle strategy with differential evolution. Int. J. Bio-Inspired Comput. 2012, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gandomi, A.H.; Yang, X.-S.; Talatahari, S.; Deb, S. Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput. Math. Appl. 2012, 63, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Talatahari, S.; Gandomi, A.H.; Yang, X.-S.; Deb, S. Optimum design of frame structures using the Eagle Strategy with Differential Evolution. Eng. Struct. 2015, 91, 16–25. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 1995, 11, 341–359. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.; Gao, X.; Zhang, H. A New Bio-inspired Algorithm: Chicken Swarm Optimization. In Advances in Swarm Intelligence, Pt1; Tan, Y., Shi, Y., Coello, C.A.C., Eds.; Springer: Cham, Switzerland, 2014; pp. 86–94. [Google Scholar]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Jain, M.; Maurya, S.; Rani, A.; Singh, V. Owl search algorithm: A novel nature-inspired heuristic paradigm for global optimization. J. Intell. Fuzzy Syst. 2018, 34, 1573–1582. [Google Scholar] [CrossRef]
- Zhuoran, Z.; Changqiang, H.; Hanqiao, H.; Shangqin, T.; Kangsheng, D. An optimization method: Hummingbirds optimization algorithm. J. Syst. Eng. Electron. 2018, 29, 386–404. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–887. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 10725. [Google Scholar] [CrossRef]
- Mohammadi-Balani, A.; Nayeri, M.D.; Azar, A.; Taghizadeh-Yazdi, M. Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Comput. Ind. Eng. 2020, 152, 107050. [Google Scholar] [CrossRef]
- Sun, J.; Lei, X. Geese-inspired hybrid particle swarm optimization algorithm for traveling salesman problem. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, IEEE, Shanghai, China, 7–8 November 2009. [Google Scholar]
- Duman, E.; Uysal, M.; Alkaya, A.F. Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [Google Scholar] [CrossRef]
- Goel, S. Pigeon Optimization Algorithm: A Novel Approach for Solving Optimization Problems. In Proceedings of the 2014 International Conference on Data Mining and Intelligent Computing (Icdmic), IEEE, Delhi, India, 5–6 September 2014. [Google Scholar]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2018, 165, 169–196. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 2019, 82, 148–174. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018, 159, 20–50. [Google Scholar] [CrossRef]
- Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S. Emperor Penguins Colony: A new metaheuristic algorithm for optimization. Evol. Intell. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Amiri, K.; Niknam, T. Optimal Planning of a Multi-carrier Energy Hub Using the Modified Bird Mating Optimizer. Iran. J. Sci. Technol. Trans. Electr. Eng. 2018, 43, 517–526. [Google Scholar] [CrossRef]
- Ahmadi, M.; Kazemi, K.; Aarabi, A.; Niknam, T.; Helfroush, M.S. Image segmentation using multilevel thresholding based on modified bird mating optimization. Multimed. Tools Appl. 2019, 78, 23003–23027. [Google Scholar] [CrossRef]
- Sadeeq, H.; Abdulazeez, A.; Kako, N.; Abrahim, A. A Novel Hybrid Bird Mating Optimizer with Differential Evolution for Engineering Design Optimization Problems. In Proceedings of the International Conference of Reliable Information and Communication Technology, Johor Bahru, Malaysia, 23–24 April 2017. [Google Scholar]
- Zhang, Q.; Yu, G.; Song, H. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization. Stat. Optim. Inf. Comput. 2015, 3, 54–65. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, M.; Lu, Z. Bird mating optimizer for structural damage detection using a hybrid objective function. Swarm Evol. Comput. 2017, 35, 41–52. [Google Scholar] [CrossRef]
- Goswami, D.; Chakraborty, S. Multi-objective optimization of electrochemical discharge machining processes: A posteriori approach based on bird mating optimizer. Opsearch 2016, 54, 306–335. [Google Scholar] [CrossRef]
- Skarzadeh, A.; Coelho, L.D.S. Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach. Energy Convers. Manag. 2015, 89, 608–614. [Google Scholar] [CrossRef]
- Zouache, D.; Arby, Y.O.; Nouioua, F.; Ben Abdelaziz, F. Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems. Comput. Ind. Eng. 2019, 129, 377–391. [Google Scholar] [CrossRef]
- Chen, Y.L.; He, P.L.; Zhang, Y.H. Combining Penalty Function with Modified Chicken Swarm Optimization for Constrained Optimization. In Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy, Congqing, China, 11–13 April 2015. [Google Scholar]
- Wu, D.; Kong, F.; Gao, W.; Shen, Y.; Ji, Z. Improved chicken swarm optimization. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER); IEEE, Shenyang, China, 8–12 June 2015. [Google Scholar]
- Khan, A.; Shah, R.; Bukhari, J.; Akhter, N.; Attaullah; Idrees, M.; Ahmad, H. A Novel Chicken Swarm Neural Network Model for Crude Oil Price Prediction. In Advances on Computational Intelligence in Energy; Springer: Cham, Switzerland, 2019; pp. 39–58. [Google Scholar]
- Liu, D.; Liu, C.; Fu, Q.; Li, T.; Khan, M.I.; Cui, S.; Faiz, M.A. Projection pursuit evaluation model of regional surface water environment based on improved chicken swarm optimization algorithm. Water Resour. Manag. 2018, 32, 1325–1342. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyay, S. Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm optimization. In Proceedings of the 2015 IEEE Power, Communication and Information Technology Conference (PCITC), IEEE, Bhubaneswar, India, 15–17 October 2015. [Google Scholar]
- Javidi, A.; Salajegheh, E.; Salajegheh, J. Enhanced crow search algorithm for optimum design of structures. Appl. Soft Comput. 2019, 77, 274–289. [Google Scholar] [CrossRef]
- Díaz, P.; Pérez-Cisneros, M.; Cuevas, E.; Avalos, O.; Gálvez, J.; Hinojosa, S.; Zaldivar, D. An Improved Crow Search Algorithm Applied to Energy Problems. Energies 2018, 11, 571. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa, S.; Oliva, D.; Cuevas, E.; Pajares, G.; Avalos, O.; Gálvez, J. Improving multi-criterion optimization with chaos: A novel Multi-Objective Chaotic Crow Search Algorithm. Neural Comput. Appl. 2018, 29, 319–335. [Google Scholar] [CrossRef]
- Sayed, G.I.; Hassanien, A.E.; Azar, A.T. Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 2017, 31, 171–188. [Google Scholar] [CrossRef]
- Dos Santos Coelho, L.; Richter, C.; Mariani, V.C.; Askarzadeh, A. Modified crow search approach applied to electromagnetic optimization. In Proceedings of the 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), IEEE, Miami, FL, USA, 11–13 November 2016. [Google Scholar]
- Gupta, D.; Sundaram, S.; Khanna, A.; Hassanien, A.E.; De Albuquerque, V.H.C. Improved diagnosis of Parkinson’s disease using optimized crow search algorithm. Comput. Electr. Eng. 2018, 68, 412–424. [Google Scholar] [CrossRef]
- Oliva, D.; Hinojosa, S.; Cuevas, E.; Pajares, G.; Avalos, O.; Galvez, J. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst. Appl. 2017, 79, 164–180. [Google Scholar] [CrossRef]
- Chi, R.; Su, Y.-X.; Zhang, D.-H.; Chi, X.-X.; Zhang, H.-J. A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Comput. Appl. 2017, 31, 653–670. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.-G.; Feng, Q.; Zhao, X.-J. An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping Algorithm for 0-1 Knapsack Problems. Comput. Intell. Neurosci. 2014, 2014, 857254. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, Y. Cuckoo Search Algorithm with Chaotic Maps. Math. Probl. Eng. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Khodier, M. Comprehensive study of linear antenna array optimisation using the cuckoo search algorithm. IET Microw. Antennas Propag. 2019, 13, 1325–1333. [Google Scholar] [CrossRef]
- Ikeda, S.; Ooka, R. Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system. Appl. Energy 2015, 151, 192–205. [Google Scholar] [CrossRef]
- Afzalan, E.; Joorabian, M. An improved cuckoo search algorithm for power economic load dispatch. Int. Trans. Electr. Energy Syst. 2014, 25, 958–975. [Google Scholar] [CrossRef]
- Shokri-Ghaleh, H.; Alfi, A. A comparison between optimization algorithms applied to synchronization of bilateral teleoperation systems against time delay and modeling uncertainties. Appl. Soft Comput. 2014, 24, 447–456. [Google Scholar] [CrossRef]
- Gheisarnejad, M. An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control. Appl. Soft Comput. 2018, 65, 121–138. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Lotfi, S. Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl. Soft Comput. 2015, 33, 48–64. [Google Scholar] [CrossRef]
- Mohammadrezapour, O.; YoosefDoost, I.; Ebrahimi, M. Cuckoo optimization algorithm in optimal water allocation and crop planning under various weather conditions (case study: Qazvin plain, Iran). Neural Comput. Appl. 2017, 31, 1879–1892. [Google Scholar] [CrossRef]
- Bayati, M. Using cuckoo optimization algorithm and imperialist competitive algorithm to solve inverse kinematics problem for numerical control of robotic manipulators. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2015, 229, 375–387. [Google Scholar] [CrossRef]
- Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K. BEPO: A novel binary emperor penguin optimizer for automatic feature selection. Knowl. Based Syst. 2020, 211, 106560. [Google Scholar] [CrossRef]
- Kaur, H.; Rai, A.; Bhatia, S.S.; Dhiman, G. MOEPO: A novel Multi-objective Emperor Penguin Optimizer for global optimization: Special application in ranking of cloud service providers. Eng. Appl. Artif. Intell. 2020, 96, 104008. [Google Scholar] [CrossRef]
- Baliarsingh, S.K.; Vipsita, S.; Muhammad, K.; Bakshi, S. Analysis of high-dimensional biomedical data using an evolutionary multi-objective emperor penguin optimizer. Swarm Evol. Comput. 2019, 48, 262–273. [Google Scholar] [CrossRef]
- Dhiman, G. ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng. Comput. 2019, 37, 323–353. [Google Scholar] [CrossRef]
- Baliarsingh, S.K.; Ding, W.; Vipsita, S.; Bakshi, S. A memetic algorithm using emperor penguin and social engineering optimization for medical data classification. Appl. Soft Comput. 2019, 85, 105773. [Google Scholar] [CrossRef]
- Xing, Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl. Based Syst. 2020, 194, 105570. [Google Scholar] [CrossRef]
- Harifi, S.; Mohammadzadeh, J.; Khalilian, M.; Ebrahimnejad, S. Hybrid-EPC: An Emperor Penguins Colony algorithm with crossover and mutation operators and its application in community detection. Prog. Artif. Intell. 2021, 10, 181–193. [Google Scholar] [CrossRef]
- Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S. Optimization in solving inventory control problem using nature inspired Emperor Penguins Colony algorithm. J. Intell. Manuf. 2020, 32, 1361–1375. [Google Scholar] [CrossRef]
- Harifi, S.; Khalilian, M.; Mohammadzadeh, J.; Ebrahimnejad, S. Optimizing a Neuro-Fuzzy System Based on Nature-Inspired Emperor Penguins Colony Optimization Algorithm. IEEE Trans. Fuzzy Syst. 2020, 28, 1110–1124. [Google Scholar] [CrossRef]
- Chen, H.; Jiao, S.; Wang, M.; Heidari, A.A.; Zhao, X. Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 2019, 244, 118778. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Wang, X.; Chen, H.; Li, C. Boosted binary Harris hawks optimizer and feature selection. Eng. Comput. 2021, 37, 3741–3770. [Google Scholar] [CrossRef]
- Chen, H.; Heidari, A.A.; Chen, H.; Wang, M.; Pan, Z.; Gandomi, A.H. Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Future Gener. Comput. Syst. 2020, 111, 175–198. [Google Scholar] [CrossRef]
- Essa, F.; Elaziz, M.A.; Elsheikh, A. An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl. Therm. Eng. 2020, 170, 115020. [Google Scholar] [CrossRef]
- Meng, T.; Pan, Q.-K.; Li, J.-Q.; Sang, H.-Y. An improved migrating birds optimization for an integrated lot-streaming flow shop scheduling problem. Swarm Evol. Comput. 2018, 38, 64–78. [Google Scholar] [CrossRef]
- Segredo, E.; Lalla-Ruiz, E.; Hart, E.; Voß, S. On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems. Expert Syst. Appl. 2018, 102, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Sioud, A.; Gagné, C. Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times. Eur. J. Oper. Res. 2018, 264, 66–73. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.-K.; Gao, L.; Zhang, X.-L.; Sang, H.-Y.; Li, J.-Q. An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming. Appl. Soft Comput. 2017, 52, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Pan, Q.-K. A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem. Inf. Sci. 2016, 372, 655–676. [Google Scholar] [CrossRef]
- Niroomand, S.; Hadi-Vencheh, A.; Şahin, R.; Vizvári, B. Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst. Appl. 2015, 42, 6586–6597. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Dong, Y. An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Inf. Sci. 2014, 277, 643–655. [Google Scholar] [CrossRef]
- Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 2019, 44, 148–175. [Google Scholar] [CrossRef]
- Andrea, H.; Aranguren, I.; Oliva, D.; Abd Elaziz, M.; Cuevas, E. Efficient image segmentation through 2D histograms and an improved owl search algorithm. Int. J. Mach. Learn. Cybern. 2021, 12, 131–150. [Google Scholar]
- El-Ashmawi, W.H.; Elminaam, D.S.A.; Nabil, A.M.; Eldesouky, E. A chaotic owl search algorithm based bilateral negotiation model. Ain Shams Eng. J. 2020, 11, 1163–1178. [Google Scholar] [CrossRef]
- Mandal, A.K.; Sen, R.; Chakraborty, B. Binary owl search algorithm for feature subset selection. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), IEEE, Morioka, Japan, 23–25 October 2019. [Google Scholar]
- Zhong, Y.; Wang, L.; Lin, M.; Zhang, H. Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for large-scale traveling salesman problem. Swarm Evol. Comput. 2019, 48, 134–144. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Dai, Z.; Chen, J.; Zhu, X.; Du, W.; Cao, X. Heterogeneous pigeon-inspired optimization. Sci. China Inf. Sci. 2019, 62, 70205. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Duan, H.; Fan, Y.; Deng, Y. Automatic Carrier Landing System multilayer parameter design based on Cauchy Mutation Pigeon-Inspired Optimization. Aerosp. Sci. Technol. 2018, 79, 518–530. [Google Scholar] [CrossRef]
- Deng, Y.; Duan, H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization. Nonlinear Dyn. 2016, 85, 97–106. [Google Scholar] [CrossRef]
- Qiu, H.; Duan, H. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design. Sci. China Ser. E Technol. Sci. 2015, 58, 1915–1923. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, H. Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planning. In Advances in Swarm Intelligence, Icsi 2014, Pt Ii; Tan, Y., Shi, Y., Coello, C.A.C., Eds.; Springer: Cham, Switzerland, 2014; pp. 96–105. [Google Scholar]
- Jiang, F.; He, J.; Zeng, Z. Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices. Sci. China Inf. Sci. 2019, 62, 70204. [Google Scholar] [CrossRef] [Green Version]
- Torabi, S.; Safi-Esfahani, F. Improved Raven Roosting Optimization algorithm (IRRO). Swarm Evol. Comput. 2018, 40, 144–154. [Google Scholar] [CrossRef]
- Torabi, S.; Safi-Esfahani, F. A dynamic task scheduling framework based on chicken swarm and improved raven roosting optimization methods in cloud computing. J. Supercomput. 2018, 74, 2581–2626. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Luo, Q. A Complex-Valued Encoding Satin Bowerbird Optimization Algorithm for Global Optimization. Evolving Systems 2021, 12, 191–205. [Google Scholar] [CrossRef]
- El-Hay, E.; El-Hameed, M.; El-Fergany, A. Steady-state and dynamic models of solid oxide fuel cells based on Satin Bowerbird Optimizer. Int. J. Hydrogen Energy 2018, 43, 14751–14761. [Google Scholar] [CrossRef]
- Dhiman, G.; Singh, K.K.; Soni, M.; Nagar, A.; Dehghani, M.; Slowik, A.; Kaur, A.; Sharma, A.; Houssein, E.H.; Cengiz, K. MOSOA: A new multi-objective seagull optimization algorithm. Expert Syst. Appl. 2020, 167, 114150. [Google Scholar] [CrossRef]
- Che, Y.; He, D. A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems. Math. Probl. Eng. 2021, 2021, 1–31. [Google Scholar]
- Das, G.; Panda, R. Seagull-Cuckoo Search Algorithm for Function Optimization. In Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT), IEEE, Maharashtra, India, 2–4 April 2021. [Google Scholar]
- Jia, H.; Xing, Z.; Song, W. A New Hybrid Seagull Optimization Algorithm for Feature Selection. IEEE Access 2019, 7, 49614–49631. [Google Scholar] [CrossRef]
- Ali, H.H.; Fathy, A.; Kassem, A.M. Optimal model predictive control for LFC of multi-interconnected plants comprising renewable energy sources based on recent sooty terns approach. Sustain. Energy Technol. Assess. 2020, 42, 100844. [Google Scholar] [CrossRef]
- Addi, N.S.; Abdullah, S.; Hamdan, A.R. Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Inf. Sci. 2015, 294, 628–644. [Google Scholar]
- Rekaby, A. Directed Artificial Bat Algorithm (DABA)-A new bio-inspired algorithm. In Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, Mysore, India, 22–25 August 2013. [Google Scholar]
- Topal, A.O.; Altun, O. A novel meta-heuristic algorithm: Dynamic Virtual Bats Algorithm. Inf. Sci. 2016, 354, 222–235. [Google Scholar] [CrossRef]
- Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Khamehchi, E. Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems. J. Nat. Gas Sci. Eng. 2016, 29, 211–222. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. 2019, 48, 1–24. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- KKumar, V.; Kumar, D. An astrophysics-inspired Grey wolf algorithm for numerical optimization and its application to engineering design problems. Adv. Eng. Softw. 2017, 112, 231–254. [Google Scholar] [CrossRef]
- Fong, S.; Deb, S.; Yang, X.-S. A heuristic optimization method inspired by wolf preying behavior. Neural Comput. Appl. 2015, 26, 1725–1738. [Google Scholar] [CrossRef]
- Bansal, J.C.; Sharma, H.; Jadon, S.S.; Clerc, M. Spider Monkey Optimization algorithm for numerical optimization. Memetic Comput. 2014, 6, 31–47. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017, 114, 48–70. [Google Scholar] [CrossRef]
- Rajakumar, B.R. The Lion’s Algorithm: A New Nature-Inspired Search Algorithm. Procedia Technol. 2012, 6, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Jolai, F. Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 2015, 3, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Kaveh, A.; Mahjoubi, S. Lion Pride Optimization Algorithm: A meta-heuristic method for global optimization problems. Sci. Iran. 2018, 25, 3113–3132. [Google Scholar] [CrossRef]
- I Mohammad, T.M.H.; Mohammad, H.B.; Shirzadi, M.T.M.H.; Bagheri, M.H. A novel meta-heuristic algorithm for numerical function optimization: Blind, naked mole-rats (BNMR) algorithm. Sci. Res. Essays 2012, 7, 3566–3583. [Google Scholar] [CrossRef]
- Deb, S.; Fong, S.; Tian, Z. Elephant search algorithm for optimization problems. In Proceedings of the 2015 Tenth International Conference on Digital Information Management (ICDIM), IEEE, Jeju, Korea, 21–23 October 2015. [Google Scholar]
- Wang, G.G.; Deb, S.; Coelho, L.D.S. Elephant Herding Optimization. In Proceedings of the 2015 3rd International Symposium on Computational and Business Intelligence, IEEE, Bali, Indonesia, 7–9 December 2015. [Google Scholar]
- Wang, G.G.; Deb, S.; Gao, X.Z.; Coelho, L.D.S. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio-Inspired Comput. 2016, 8, 394. [Google Scholar] [CrossRef]
- Osaba, E.; Yang, X.-S.; Fister, I.; Del Ser, J.; Lopez-Garcia, P.; Vazquez-Pardavila, A.J. A Discrete and Improved Bat Algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evol. Comput. 2019, 44, 273–286. [Google Scholar] [CrossRef]
- Chakri, A.; Khelif, R.; Benouaret, M.; Yang, X.-S. New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 2017, 69, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.-B.; Gao, X.; Liu, Y.; Zhang, H. A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Syst. Appl. 2015, 42, 6350–6364. [Google Scholar] [CrossRef]
- Yılmaz, S.; Kucuksille, E.U. A new modification approach on bat algorithm for solving optimization problems. Appl. Soft Comput. 2015, 28, 259–275. [Google Scholar] [CrossRef]
- Fister, I., Jr.; Fister, D.; Yang, X.S. A hybrid bat algorithm. arXiv 2013, arXiv:1303.6310. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Hong, W.-C.; Li, M.-W.; Geng, J.; Zhang, Y. Novel chaotic bat algorithm for forecasting complex motion of floating platforms. Appl. Math. Model. 2019, 72, 425–443. [Google Scholar] [CrossRef]
- Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int. 2018, 34, 1252–1272. [Google Scholar] [CrossRef]
- Dao, T.-K.; Pan, T.-S.; Nguyen, T.-T.; Pan, J.-S. Parallel bat algorithm for optimizing makespan in job shop scheduling problems. J. Intell. Manuf. 2015, 29, 451–462. [Google Scholar] [CrossRef]
- Osaba, E.; Yang, X.-S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [Google Scholar] [CrossRef]
- Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int. J. Electr. Power Energy Syst. 2014, 56, 42–54. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H.; Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 2012, 22, 1239–1255. [Google Scholar] [CrossRef]
- Hasançebi, O.; Teke, T.; Pekcan, O. A bat-inspired algorithm for structural optimization. Comput. Struct. 2013, 128, 77–90. [Google Scholar] [CrossRef]
- Taherdangkoo, M.; Shirzadi, M.H.; Yazdi, M.; Bagheri, M.H. A robust clustering method based on blind, naked mole-rats (BNMR) algorithm. Swarm Evol. Comput. 2013, 10, 1–11. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, R.; Singh, N.; Dhiman, G. SChoA: A newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Eng. Comput. 2021, 1–29. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M. Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm. Appl. Acoust. 2019, 157, 107005. [Google Scholar] [CrossRef]
- Kaveh, A.; Hosseini, P. A simplified dolphin echolocation optimization method for optimum design of trusses. Iran Univ. Sci. Technol. 2014, 4, 381–397. [Google Scholar]
- Daryan, A.S.; Palizi, S.; Farhoudi, N. Optimization of plastic analysis of moment frames using modified dolphin echolocation algorithm. Adv. Struct. Eng. 2019, 22, 2504–2516. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Poorhoseini, H. Optimum design of steel frame structures by a modified dolphin echolocation algorithm. Struct. Eng. Mech. 2015, 55, 535–554. [Google Scholar] [CrossRef]
- Lenin, K.; Reddy, B.R.; Kalavathi, M.S. Dolphin echolocation algorithm for solving optimal reactive power dispatch problem. Int. J. Comput. 2014, 12, 1–15. [Google Scholar]
- Topal, A.O.; Yildiz, Y.E.; Ozkul, M. Improved Dynamic Virtual Bats Algorithm for Global Numerical Optimization. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 25–27 October 2017. [Google Scholar]
- Elhosseini, M.A.; El Sehiemy, R.A.; Rashwan, Y.I.; Gao, X. On the performance improvement of elephant herding optimization algorithm. Knowl. Based Syst. 2019, 166, 58–70. [Google Scholar] [CrossRef]
- Jafari, M.; Salajegheh, E.; Salajegheh, J. An efficient hybrid of elephant herding optimization and cultural algorithm for optimal design of trusses. Eng. Comput. 2018, 35, 781–801. [Google Scholar] [CrossRef]
- Sadouki, S.C.; Tari, A. Multi-objective and discrete Elephants Herding Optimization algorithm for QoS aware web service composition. RAIRO Oper. Res. 2019, 53, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Tuba, E.; Capor-Hrosik, R.; Alihodzic, A.; Jovanovic, R.; Tuba, M. Chaotic elephant herding optimization algorithm. In Proceedings of the 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI); IEEE, Kosice and Herlany, Slovakia, 7–10 February 2018. [Google Scholar]
- Xu, H.; Cao, Q.; Fu, H.; Fu, C.; Chen, H.; Su, J. Application of Support Vector Machine Model Based on an Improved Elephant Herding Optimization Algorithm in Network Intrusion Detection. In International CCF Conference on Artificial Intelligence, Xuzhou, China, 22–23 August 2019; Springer: Singapore, 2019. [Google Scholar]
- Tuba, E.; Alihodzic, A.; Tuba, M. Multilevel image thresholding using elephant herding optimization algorithm. In Proceedings of the 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), IEEE, Oradea, Romania,, 1–2 June 2017. [Google Scholar]
- Tuba, E.; Ribic, I.; Capor-Hrosik, R.; Tuba, M. Support Vector Machine Optimized by Elephant Herding Algorithm for Erythemato-Squamous Diseases Detection. Procedia Comput. Sci. 2017, 122, 916–923. [Google Scholar] [CrossRef]
- Pichpibul, T. Modified Elephant Search Algorithm for Distribution of Snack Food in Thailand. In Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, ACM, Phuket, Thailand, 24–25 March 2018. [Google Scholar]
- Tian, Z.; Fong, S.; Wong, R.; Millham, R. Elephant search algorithm on data clustering. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), IEEE, Changsha, China, 13–15 August 2016. [Google Scholar]
- Deb, S.; Tian, Z.; Fong, S.; Wong, R.; Millham, R.; Wong, K.K.L. Elephant search algorithm applied to data clustering. Soft Comput. 2018, 22, 6035–6046. [Google Scholar] [CrossRef]
- Deb, S.; Fong, S.; Tian, Z.; Wong, R.K.; Mohammed, S.; Fiaidhi, J. Finding approximate solutions of NP-hard optimization and TSP problems using elephant search algorithm. J. Supercomput. 2016, 72, 3960–3992. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; El-Henawy, I.; de Albuquerque, V.H.C.; Mirjalili, S. A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst. Appl. 2020, 139, 112824. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K. A novel Random Walk Grey Wolf Optimizer. Swarm Evol. Comput. 2019, 44, 101–112. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Yi, J. Grey wolf optimizer with cellular topological structure. Expert Syst. Appl. 2018, 107, 89–114. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 2018, 69, 504–515. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H. Grey Wolf optimizer: Theory, literature review, and application in computational fluid dynamics problems. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 87–105. [Google Scholar]
- Nahak, N.; Sahoo, S.R.; Mallick, R.K. Design of dual optimal UPFC based PI controller to damp low frequency oscillation in power system. In Proceedings of the Technologies for Smart-City Energy Security and Power (ICSESP), IEEE, Bhubaneswar, India, 28–30 March 2018. [Google Scholar]
- Emary, E.; Zawbaa, H.M.; Grosan, C. Experienced Gray Wolf Optimization Through Reinforcement Learning and Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 2017, 29, 681–694. [Google Scholar] [CrossRef]
- Mohanty, S.; Subudhi, B.; Ray, P.K. A New MPPT Design Using Grey Wolf Optimization Technique for Photovoltaic System Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2015, 7, 181–188. [Google Scholar] [CrossRef]
- Rajakumar, B. Lion algorithm for standard and large scale bilinear system identification: A global optimization based on Lion’s social behavior. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC); IEEE, Beijing, China, 6–11 July 2014. [Google Scholar]
- Marichelvam, M.; Manimaran, P.; Geetha, M. Solving flexible job shop scheduling problems using a hybrid lion optimisation algorithm. Int. J. Adv. Oper. Manag. 2018, 10, 91–108. [Google Scholar] [CrossRef]
- Paraskar, S.; Singh, D.K.; Tapre, P.C. Lion algorithm for generation rescheduling based congestion management in deregulated power system. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), IEEE, Chennai, India, 1–2 August 2017. [Google Scholar]
- Sowmiyasree, S.; Sumitra, P. Lion Optimization Algorithm Using Data Mining Classification and Clustering Models. GSJ 2018, 6, 219–226. [Google Scholar]
- Kaveh, A.; Mahjoubi, S. Optimum Design of Double-layer Barrel Vaults by Lion Pride Optimization Algorithm and a Comparative Study. Structures 2018, 13, 213–229. [Google Scholar] [CrossRef]
- Engy, E.; Ali, E.; Sally, E.-G. An optimized artificial neural network approach based on sperm whale optimization algorithm for predicting fertility quality. Stud. Inform. Control. 2018, 27, 349–358. [Google Scholar]
- Sharma, N.; Kaur, A.; Sharma, H.; Sharma, A.; Bansal, J.C. Chaotic Spider Monkey Optimization Algorithm with Enhanced Learning. In Soft Computing for Problem Solving; Springer: Singapore, 2018; pp. 149–161. [Google Scholar]
- Sharma, A.; Sharma, H.; Bhargava, A.; Sharma, N.; Bansal, J.C. Optimal power flow analysis using lévy flight spider monkey optimisation algorithm. Int. J. Artif. Intell. Soft Comput. 2017, 5, 320–352. [Google Scholar] [CrossRef]
- Gupta, K.; Deep, K.; Bansal, J.C. Improving the Local Search Ability of Spider Monkey Optimization Algorithm Using Quadratic Approximation for Unconstrained Optimization. Comput. Intell. 2016, 33, 210–240. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Panigrahi, B.K.; Kiran, D.; Kumar, R. Ageist Spider Monkey Optimization algorithm. Swarm Evol. Comput. 2016, 28, 58–77. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, H.; Bhargava, A.; Sharma, N.; Bansal, J.C. Optimal placement and sizing of capacitor using Limaçon inspired spider monkey optimization algorithm. Memetic Comput. 2016, 9, 311–331. [Google Scholar] [CrossRef]
- Singh, P.R.; Elaziz, M.A.; Xiong, S. Modified Spider Monkey Optimization based on Nelder–Mead method for global optimization. Expert Syst. Appl. 2018, 110, 264–289. [Google Scholar] [CrossRef]
- Singh, U.; Salgotra, R.; Rattan, M. A Novel Binary Spider Monkey Optimization Algorithm for Thinning of Concentric Circular Antenna Arrays. IETE J. Res. 2016, 62, 736–744. [Google Scholar] [CrossRef]
- Tripathy, D.; Sahu, B.K.; Patnaik, B.; Choudhury, N.D. Spider monkey optimization based fuzzy-2D-PID controller for load frequency control in two-area multi source interconnected power system. In Proceedings of the 2018 Technologies for Smart-City Energy Security and Power (ICSESP), IEEE, Bhubaneswar, India, 29–30 March 2018. [Google Scholar]
- Ehteram, M.; Karami, H.; Farzin, S. Reducing Irrigation Deficiencies Based Optimizing Model for Multi-Reservoir Systems Utilizing Spider Monkey Algorithm. Water Resour. Manag. 2018, 32, 2315–2334. [Google Scholar] [CrossRef]
- Cheruku, R.; Edla, D.R.; Kuppili, V. SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification. Comput. Biol. Med. 2017, 81, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, G.; Kumar, V. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering problems. Knowl. Based Syst. 2018, 150, 175–197. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, A. Spotted hyena optimizer for solving engineering design problems. In Proceedings of the 2017 International Conference on Machine Learning and Data Science (MLDS), IEEE, Noida, India, 14–15 December 2017. [Google Scholar]
- Luo, Q.; Li, J.; Zhou, Y.; Liao, L. Using Spotted Hyena Optimizer for Training Feedforward Neural Networks. In Proceedings of the International Conference on Intelligent Computing, Wuhan, China, 15–18 August 2018. [Google Scholar]
- Dhiman, G.; Kaur, A. Optimizing the Design of Airfoil and Optical Buffer Problems Using Spotted Hyena Optimizer. Designs 2018, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Futur. Gener. Comput. Syst. 2018, 85, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. MPPT in Dynamic Condition of Partially Shaded PV System by Using WODE Technique. IEEE Trans. Sustain. Energy 2017, 8, 1204–1214. [Google Scholar] [CrossRef]
- Kaveh, A.; Ghazaan, M.I. Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech. Based Des. Struct. Mach. 2016, 45, 345–362. [Google Scholar] [CrossRef]
- Sun, W.Z.; Wang, J.S. Elman Neural Network Soft-Sensor Model of Conversion Velocity in Polymerization Process Optimized by Chaos Whale Optimization Algorithm. IEEE Access 2017, 5, 13062–13076. [Google Scholar] [CrossRef]
- Medani, K.B.O.; Sayah, S.; Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system. Electr. Power Syst. Res. 2018, 163, 696–705. [Google Scholar] [CrossRef]
- Mehne, H.H.; Mirjalili, S. A parallel numerical method for solving optimal control problems based on whale optimization algorithm. Knowl. Based Syst. 2018, 151, 114–123. [Google Scholar] [CrossRef]
- Tharwat, A.; Moemen, Y.S.; Hassanien, A.E. Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J. Biomed. Inform. 2017, 68, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.-K.; Pan, T.-S.; Pan, J.-S. A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP); IEEE, Chengdu, China, 6–10 November 2016. [Google Scholar]
- Hassanien, A.E.; Abd Elfattah, M.; Aboulenin, S.; Schaefer, G.; Zhu, S.Y.; Korovin, I. Historic handwritten manuscript binarisation using whale optimisation. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, Budapest, Hungary, 9–12 October 2016. [Google Scholar]
- Shadravan, S.; Naji, H.; Bardsiri, V. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, N.; Vidyarthi, D.P. Artificial lizard search optimization (ALSO): A novel nature-inspired meta-heuristic algorithm. Soft Comput. 2021, 25, 6179–6201. [Google Scholar] [CrossRef]
- Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
- Boettcher, S.; Percus, A. Nature’s way of optimizing. Artif. Intell. 2000, 119, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 2010, 60, 2087–2098. [Google Scholar] [CrossRef] [Green Version]
- Civicioglu, P. Backtracking Search Optimization Algorithm for numerical optimization problems. Appl. Math. Comput. 2013, 219, 8121–8144. [Google Scholar] [CrossRef]
- Haldar, V.; Chakraborty, N. A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark: Fish electrolocation optimization. Soft Comput. 2016, 21, 3827–3848. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Mohseni, S.; Gholami, R.; Zarei, N.; Zadeh, A.R. Competition over resources: A new optimization algorithm based on animals behavioral ecology. In Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems (INCoS), Salerno, Italy, 10–12 September 2014. [Google Scholar]
- Sharafi, Y.; Khanesar, M.A.; Teshnehlab, M. COOA: Competitive optimization algorithm. Swarm Evol. Comput. 2016, 30, 39–63. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Yin, M. Animal migration optimization: An optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 2013, 24, 1867–1877. [Google Scholar] [CrossRef]
- Lai, Z.; Feng, X.; Yu, H. An Improved Animal Migration Optimization Algorithm Based on Interactive Learning Behavior for High Dimensional Optimization Problem. In Proceedings of the 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), IEEE, Shenzhen, China, 9–11 May 2019. [Google Scholar]
- Cao, Y.; Li, X.; Wang, J. Opposition-Based Animal Migration Optimization. Math. Probl. Eng. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Son, L.H.; Chiclana, F.; Kumar, R.; Mittal, M.; Khari, M.; Chatterjee, J.M.; Baik, S.W. ARM–AMO: An efficient association rule mining algorithm based on animal migration optimization. Knowl. Based Syst. 2018, 154, 68–80. [Google Scholar] [CrossRef]
- Ma, M.; Luo, Q.; Zhou, Y.; Chen, X.; Li, L. An Improved Animal Migration Optimization Algorithm for Clustering Analysis. Discret. Dyn. Nat. Soc. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Crawford, B.; Soto, R.; Lemus-Romani, J.; Astorga, G.; Salas-Fernández, A.; Rubio, J.M. Optimization of Bridges Reinforcement by Conversion to Tied Arch Using an Animal Migration Algorithm. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Graz, Austria, 9–11 July 2019. [Google Scholar]
- Farshi, T.R. A multilevel image thresholding using the animal migration optimization algorithm. Iran J. Comput. Sci. 2018, 2, 9–22. [Google Scholar] [CrossRef]
- Tsai, H.-C. Improving backtracking search algorithm with variable search strategies for continuous optimization. Appl. Soft Comput. 2019, 80, 567–578. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, H.; Ji, X.; Deng, W. An improved backtracking search algorithm for casting heat treatment charge plan problem. J. Intell. Manuf. 2017, 30, 1335–1350. [Google Scholar] [CrossRef]
- Lin, J. Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems. Nonlinear Dyn. 2014, 80, 209–219. [Google Scholar] [CrossRef]
- Chen, D.; Zou, F.; Lu, R.; Wang, P. Learning backtracking search optimisation algorithm and its application. Inf. Sci. 2017, 376, 71–94. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Q.; Gao, L.; Li, X. Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems. Expert Syst. Appl. 2015, 42, 7831–7845. [Google Scholar] [CrossRef]
- Pourdaryaei, A.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S. Short-Term Electricity Price Forecasting via Hybrid Backtracking Search Algorithm and ANFIS Approach. IEEE Access 2019, 7, 77674–77691. [Google Scholar] [CrossRef]
- Ma, H.; Fei, M.; Simon, D.; Chen, Z. Biogeography-based optimization in noisy environments. Trans. Inst. Meas. Control. 2014, 37, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Saremi, S.; Mirjalili, S.; Lewis, A. Biogeography-based optimisation with chaos. Neural Comput. Appl. 2014, 25, 1077–1097. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena 2018, 173, 302–311. [Google Scholar] [CrossRef]
- Mendes, L.A.; Freire, R.Z.; Coelho, L.D.S.; Moraes, A.S. Minimizing computational cost and energy demand of building lighting systems: A real time experiment using a modified competition over resources algorithm. Energy Build. 2017, 139, 108–123. [Google Scholar] [CrossRef]
- Bouchekara, H.R.; Nahas, M. Optimization of magnetic actuators using competition over resources algorithm. In Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; IEEE: Singapore, 2017. [Google Scholar]
- Kulluk, S. A novel hybrid algorithm combining hunting search with harmony search algorithm for training neural networks. J. Oper. Res. Soc. 2013, 64, 748–761. [Google Scholar] [CrossRef]
- Doğan, E.; Erdal, F. Hunting search algorithm based design optimization of steel cellular beams. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, New York, NY, USA, 6–10 July 2013. [Google Scholar]
- Elaziz, M.A.; Ewees, A.A.; Yousri, D.; Alwerfali, H.S.N.; Awad, Q.A.; Lu, S.; Al-Qaness, M.A.A. An Improved Marine Predators Algorithm With Fuzzy Entropy for Multi-Level Thresholding: Real World Example of COVID-19 CT Image Segmentation. IEEE Access 2020, 8, 125306–125330. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Luo, Q.; Zhou, Y.; Jiang, M. TLMPA: Teaching-learning-based Marine Predators algorithm. AIMS Math. 2021, 6, 1395–1442. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Ryan, M.; Mirjalili, S. New binary marine predators optimization algorithms for 0–1 knapsack problems. Comput. Ind. Eng. 2020, 151, 106949. [Google Scholar] [CrossRef]
- Ridha, H.M. Parameters extraction of single and double diodes photovoltaic models using Marine Predators Algorithm and Lambert W function. Sol. Energy 2020, 209, 674–693. [Google Scholar] [CrossRef]
- Sayed, G.I.; Solyman, M.; Hassanien, A.E. A novel chaotic optimal foraging algorithm for unconstrained and constrained problems and its application in white blood cell segmentation. Neural Comput. Appl. 2018, 31, 7633–7664. [Google Scholar] [CrossRef]
- Zhang, W.-B.; Zhu, G.-Y. Drilling Path Optimization by Optimal Foraging Algorithm. IEEE Trans. Ind. Informatics 2017, 14, 2847–2856. [Google Scholar] [CrossRef]
- Sayed, G.I.; Soliman, M.; Hassanien, A.E. Modified optimal foraging algorithm for parameters optimization of support vector machine. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Cairo, Egypt, 22–24 February 2018. [Google Scholar]
- Srivastava, S.; Sahana, S.K. The Insects of Innovative Computational Intelligence; Springer: Singapore, 2017. [Google Scholar]
- Akay, B.; Karaboga, D. A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf. Sci. 2012, 192, 120–142. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2015, 27, 1053–1073. [Google Scholar] [CrossRef]
- Cuevas, E.; Cienfuegos, M.; Zaldivar-Navarro, D.; Perez-Cisneros, M.A. A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 2013, 40, 6374–6384. [Google Scholar] [CrossRef] [Green Version]
- Häckel, S.; Dippold, P. The Bee Colony-inspired Algorithm (BCiA): A two-stage approach for solving the vehicle routing problem with time windows. In Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference, ACM, Montreal, Canada, 8–12 July 2009. [Google Scholar]
- Rajasekhar, A.; Lynn, N.; Das, S.; Suganthan, P. Computing with the collective intelligence of honey bees—A survey. Swarm Evol. Comput. 2017, 32, 25–48. [Google Scholar] [CrossRef]
- Diwold, K.; Beekman, M.; Middendorf, M. Honeybee optimisation–an overview and a new bee inspired optimisation scheme. In Handbook of Swarm Intelligence, In Handbook of Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2011; pp. 295–327. [Google Scholar]
- Comellas, F.; Martínez-Navarro, J. Bumblebees: A multiagent combinatorial optimization algorithm inspired by social insect behaviour. In Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC’09; ACM, Shanghai, China, 12–14 June 2009. [Google Scholar]
- Marinakis, Y.; Marinaki, M.; Matsatsinis, N. A Bumble Bees Mating Optimization Algorithm for Global Unconstrained Optimization Problems. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Granada, Spain, 12–15 May 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 305–318. [Google Scholar]
- Shnerb, N.M.; Louzoun, Y.; Bettelheim, E.; Solomon, S. The importance of being discrete: Life always wins on the surface. Proc. Natl. Acad. Sci. USA 2000, 97, 10322–10324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: An Autocatalytic Optimizing Process; Politecnico di Milano: Milan, Italy, 1991; pp. 1–21. [Google Scholar]
- Zungeru, A.M.; Ang, L.-M.; Seng, K.P. Termite-hill: Performance optimized swarm intelligence based routing algorithm for wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 1901–1917. [Google Scholar] [CrossRef]
- Das, K.N.; Singh, T.K. Drosophila Food-Search Optimization. Appl. Math. Comput. 2014, 231, 566–580. [Google Scholar] [CrossRef]
- Abidin, Z.Z.; Arshad, M.R.; Ngah, U.K. A Simulation Based Fly Optimization Algorithm for Swarms of Mini Autonomous Surface Vehicles Application. Available online: http://nopr.niscair.res.in/handle/123456789/11731 (accessed on 3 January 2021).
- Pan, W.-T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowl. Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Feng, X.; Lau, F.C.M.; Gao, D. A New Bio-Inspired Approach to the Traveling Salesman Problem; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Feng, X.; Lau, F.C.; Yu, H. A novel bio-inspired approach based on the behavior of mosquitoes. Inf. Sci. 2013, 233, 87–108. [Google Scholar] [CrossRef]
- Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Computing and Applications 2015, 31, 1995–2014. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, K.K.; Sarmah, S.P. Monarch Migration Algorithm for optimization problems. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management;IEEE, Bali, Indonesia, 4–7 December 2016. [Google Scholar]
- Kumar, A.; Misra, R.K.; Singh, D. Butterfly optimizer. In Proceedings of the 2015 IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions, WCI 2015; IEEE, Kanpur, India, 14–17 December 2015. [Google Scholar]
- Qi, X.; Zhu, Y.; Zhang, H. A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 2017, 23, 226–239. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2018, 23, 715–734. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mei, R.N.S.; Sulaiman, M.H.; Mustaffa, Z.; Daniyal, H. Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210–222. [Google Scholar]
- Mohamed, A.-A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M. Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 2017, 142, 190–206. [Google Scholar] [CrossRef]
- Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2016, 10, 151–164. [Google Scholar] [CrossRef]
- Chen, S. Locust Swarms-A new multi-optima search technique. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation. IEEE, Trondheim, Norway, 18–21 May 2009. [Google Scholar]
- Cuevas, E.; Gonzalez, A.; Zaldívar, D.; Perez-Cisneros, M.A. An optimisation algorithm based on the behaviour of locust swarms. Int. J. Bio-Inspired Comput. 2015, 7, 402. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Havens, T.C.; Spain, C.J.; Salmon, N.G.; Keller, J.M. Roach infestation optimization. In Proceedings of the 2008 IEEE Swarm Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008. [Google Scholar]
- ZhaoHui, C.; HaiYan, T. Cockroach swarm optimization. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–19 April 2010. [Google Scholar]
- Wu, S.-J.; Wu, C.-T. A bio-inspired optimization for inferring interactive networks: Cockroach swarm evolution. Expert Syst. Appl. 2015, 42, 3253–3267. [Google Scholar] [CrossRef]
- Kallioras, N.A.; Lagaros, N.D.; Avtzis, D.N. Pity beetle algorithm – A new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 2018, 121, 147–166. [Google Scholar] [CrossRef]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2016, 46, 79–95. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary ant lion approaches for feature selection. Neurocomputing 2016, 213, 54–65. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M. Impact of Chaos Functions on Modern Swarm Optimizers. PLoS ONE 2016, 11, e0158738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M. Ant Lion optimizer: Theory, literature review, and application in multi-layer perceptron neural networks. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 23–46. [Google Scholar]
- Raju, M.; Saikia, L.C.; Sinha, N. Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller. Int. J. Electr. Power Energy Syst. 2016, 80, 52–63. [Google Scholar] [CrossRef]
- Marinakis, Y.; Marinaki, M. Combinatorial neighborhood topology bumble bees mating optimization for the vehicle routing problem with stochastic demands. Soft Comput. 2014, 19, 353–373. [Google Scholar] [CrossRef]
- Marinakis, Y.; Marinaki, M.; Migdalas, A. An Adaptive Bumble Bees Mating Optimization algorithm. Appl. Soft Comput. 2017, 55, 13–30. [Google Scholar] [CrossRef]
- Marinaki, M.; Marinakis, Y. A bumble bees mating optimization algorithm for the feature selection problem. Int. J. Mach. Learn. Cybern. 2014, 7, 519–538. [Google Scholar] [CrossRef]
- Kumar, A.; Maini, T.; Misra, R.K.; Singh, D. Butterfly Constrained Optimizer for Constrained Optimization Problems; Springer: Singapore, 2019. [Google Scholar]
- Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, Donostia, Spain, 5–8 June 2017. [Google Scholar]
- Sharma, S.; Saha, A.K. m-MBOA: A novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Comput. 2019, 24, 4809–4827. [Google Scholar] [CrossRef]
- Li, G.; Shuang, F.; Zhao, P.; Le, C. An Improved Butterfly Optimization Algorithm for Engineering Design Problems Using the Cross-Entropy Method. Symmetry 2019, 11, 1049. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Anand, P. Learning automata-based butterfly optimization algorithm for engineering design problems. Int. J. Comput. Mater. Sci. Eng. 2018, 7, 1850021. [Google Scholar] [CrossRef]
- Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2018, 116, 147–160. [Google Scholar] [CrossRef]
- Aygül, K.; Cikan, M.; Demirdelen, T.; Tumay, M. Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Sun, P. One-Way Pioneer Guide Pity Beetle Algorithm: A New Evolutionary Algorithm for Solving Global Optimization Problems. IEEE Access 2020, 8, 203270–203293. [Google Scholar] [CrossRef]
- Priya, M.M.M.A.; Jawhar, D.S.J.; Geisa, D.J.M. Optimal Deep Belief Network with Opposition based Pity Beetle Algorithm for Lung Cancer Classification: A DBNOPBA Approach. Comput. Methods Programs Biomed. 2021, 199, 105902. [Google Scholar] [CrossRef]
- KS, S.R.; Murugan, S. Memory based Hybrid Dragonfly Algorithm for numerical optimization problems. Expert Syst. Appl. 2017, 83, 63–78. [Google Scholar]
- Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection. Appl. Intell. 2018, 49, 188–205. [Google Scholar] [CrossRef]
- Hariharan, M.; Sindhu, R.; Vijean, V.; Yazid, H.; Nadarajaw, T.; Yaacob, S.; Polat, K. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification. Comput. Methods Programs Biomed. 2018, 155, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I. Dragonfly algorithm: Theory, literature review, and application in feature selection. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 47–67. [Google Scholar]
- El-Hay, E.A.; El-Hameed, M.A.; El-Fergany, A.A. Improved performance of PEM fuel cells stack feeding switched reluctance motor using multi-objective dragonfly optimizer. Neural Comput. Appl. 2018, 31, 6909–6924. [Google Scholar] [CrossRef]
- Das, K.N.; Singh, T.K.; Baishnab, K.L. Parameter Optimization of Winner-Take-All Circuit for Attention Shift Using Drosophila Food-Search Optimization Algorithm. In Proceedings of Fourth International Conference on Soft Computing for Problem Solving; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Fister, I.J.; Perc, M.; Kamal, S.M. A review of chaos-based firefly algorithms: Perspectives and research challenges. Appl. Math. Comput. 2015, 252, 155–165. [Google Scholar] [CrossRef]
- Sahu, R.K.; Panda, S.; Pradhan, P.C. Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for LFC of multi area power systems. Int. J. Electr. Power Energy Syst. 2015, 69, 200–212. [Google Scholar] [CrossRef]
- Tahershamsi, A.; Kaveh, A.; Sheikholeslami, R.; Kazemzadeh Azad, S. An improved firefly algorithm with harmony search scheme for optimization of water distribution systems. Sci. Iran. 2014, 21, 1591–1607. [Google Scholar]
- George, G.; Parthiban, L. Multi objective hybridized firefly algorithm with group search optimization for data clustering. In Proceedings of the 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks, Kolkata, India, 20–22 November 2015. [Google Scholar]
- Abd-Elazim, S.; Ali, E.S. Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Comput. Appl. 2016, 30, 607–616. [Google Scholar] [CrossRef]
- Dey, N.; Samanta, S.; Chakraborty, S.; Das, A.; Chaudhuri, S.S.; Suri, J.S. Firefly Algorithm for Optimization of Scaling Factors During Embedding of Manifold Medical Information: An Application in Ophthalmology Imaging. J. Med Imaging Heal. Inform. 2014, 4, 384–394. [Google Scholar] [CrossRef]
- Sayadi, M.K.; Hafezalkotob, A.; Naini, S.G.J. Firefly-inspired algorithm for discrete optimization problems: An application to manufacturing cell formation. J. Manuf. Syst. 2013, 32, 78–84. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Heidari, A.A.; Wang, P.; Li, J.; Yang, Y.; Wang, M.; Huang, C. Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines. Expert Syst. Appl. 2019, 142, 112999. [Google Scholar] [CrossRef]
- Yuan, X.; Dai, X.; Zhao, J.; He, Q. On a novel multi-swarm fruit fly optimization algorithm and its application. Appl. Math. Comput. 2014, 233, 260–271. [Google Scholar] [CrossRef]
- Ding, G.; Dong, F.; Zou, H. Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding. Appl. Soft Comput. 2019, 84, 105704. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Y.; Liu, S. An improved fruit fly optimization algorithm and its application to joint replenishment problems. Expert Syst. Appl. 2015, 42, 4310–4323. [Google Scholar] [CrossRef]
- Wu, L.; Zuo, C.; Zhang, H. A cloud model based fruit fly optimization algorithm. Knowl. Based Syst. 2015, 89, 603–617. [Google Scholar] [CrossRef]
- Darwish, S.M.; Elmasry, A.; Ibrahim, S.H. Optimal Shortest Path in Mobile Ad-Hoc Network Based on Fruit Fly Optimization Algorithm. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Cairo, Egypt, 28–30 March 2019. [Google Scholar]
- Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.I.; Al-Zoubi, A.M.; Mirjalili, S. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst. Appl. 2018, 117, 267–286. [Google Scholar] [CrossRef]
- Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018, 48, 805–820. [Google Scholar] [CrossRef]
- Arora, S.; Anand, P. Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 2018, 31, 4385–4405. [Google Scholar] [CrossRef]
- Luo, J.; Chen, H.; Zhang, Q.; Xu, Y.; Huang, H.; Zhao, X. An improved grasshopper optimization algorithm with application to financial stress prediction. Appl. Math. Model. 2018, 64, 654–668. [Google Scholar] [CrossRef]
- Aljarah, I.; Al-Zoubi, A.M.; Faris, H.; Hassonah, M.A.; Mirjalili, S.; Saadeh, H. Simultaneous Feature Selection and Support Vector Machine Optimization Using the Grasshopper Optimization Algorithm. Cogn. Comput. 2018, 10, 478–495. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, Y.; Fan, J.; Wang, T.; Yin, T. A Novel Network Architecture of Decision-Making for Self-Driving Vehicles Based on Long Short-Term Memory and Grasshopper Optimization Algorithm. IEEE Access 2020, 8, 155429–155440. [Google Scholar] [CrossRef]
- Cui, L.; Deng, J.; Wang, L.; Xu, M.; Zhang, Y. A novel locust swarm algorithm for the joint replenishment problem considering multiple discounts simultaneously. Knowl. Based Syst. 2016, 111, 51–62. [Google Scholar] [CrossRef]
- Cuevas, E.; Zaldívar, D.; Perez-Cisneros, M. Automatic Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms. In Applications of Evolutionary Computation in Image Processing and Pattern Recognition; Springer International Publishing: Cham, Switzerland, 2016; pp. 229–269. [Google Scholar]
- Cuevas, E.; Gonzalez, A.; Fausto, F.; Zaldívar, D.; Perez-Cisneros, M.A. Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms. Math. Probl. Eng. 2015, 2015, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chatterjee, B.; Singh, P.K.; Yoon, J.H.; Geem, Z.W.; Sarkar, R. Mayfly in Harmony: A New Hybrid Meta-Heuristic Feature Selection Algorithm. IEEE Access 2020, 8, 195929–195945. [Google Scholar] [CrossRef]
- Ramasamy, K.; Ravichandran, C.S. Optimal design of renewable sources of PV /wind/ FC generation for power system reliability and cost using MA-RBFNN approach. Int. J. Energy Res. 2021, 45, 10946–10962. [Google Scholar] [CrossRef]
- Yazdani, S.; Hadavandi, E. LMBO-DE: A linearized monarch butterfly optimization algorithm improved with differential evolution. Soft Comput. 2018, 23, 8029–8043. [Google Scholar] [CrossRef]
- Wang, G.-G.; Deb, S.; Zhao, X.; Cui, Z. A new monarch butterfly optimization with an improved crossover operator. Oper. Res. 2016, 18, 731–755. [Google Scholar] [CrossRef]
- Wang, G.-G.; Zhao, X.; Deb, S. A Novel Monarch Butterfly Optimization with Greedy Strategy and Self-Adaptive. 2015 Second. Int. Conf. Soft Comput. Mach. Intell. 2015, 2015, 45–50. [Google Scholar]
- Feng, Y.; Yang, J.; Wu, C.; Lu, M.; Zhao, X.-J. Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation. Memetic Comput. 2016, 10, 135–150. [Google Scholar] [CrossRef]
- Devikanniga, D.; Raj, R.J.S. Classification of osteoporosis by artificial neural network based on monarch butterfly optimisation algorithm. Heal. Technol. Lett. 2018, 5, 70–75. [Google Scholar] [CrossRef]
- Chen, S.; Chen, R.; Gao, J. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem. Algorithms 2017, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Feng, X.; Yu, H. Mosquito Host-Seeking Algorithm Based on Random Walk and Game of Life; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155. [Google Scholar] [CrossRef]
- Savsani, V.; Tawhid, M.A. Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng. Appl. Artif. Intell. 2017, 63, 20–32. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, D.; Shang, M.; Qi, S. Parameter Identification of Single-Phase Inverter Based on Improved Moth Flame Optimization Algorithm. Electr. Power Components Syst. 2019, 47, 456–469. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Zhang, S.; Song, J. Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems. Math. Probl. Eng. 2016, 2016, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Mehne, S.H.H.; Mirjalili, S. Moth-Flame Optimization Algorithm: Theory, Literature Review, and Application in Optimal Nonlinear. Nat. Inspired Optim. Theor. Lit. Rev. Appl. 2020, 810, 143. [Google Scholar]
- Luo, Q.; Yang, X.; Zhou, Y. Nature-inspired approach: An enhanced moth swarm algorithm for global optimization. Math. Comput. Simul. 2018, 159, 57–92. [Google Scholar] [CrossRef]
- Shilaja, C.; Arunprasath, T. Optimal power flow using Moth Swarm Algorithm with Gravitational Search Algorithm considering wind power. Future Gener. Comput. Syst. 2019, 98, 708–715. [Google Scholar]
- Duman, S. A Modified Moth Swarm Algorithm Based on an Arithmetic Crossover for Constrained Optimization and Optimal Power Flow Problems. IEEE Access 2018, 6, 45394–45416. [Google Scholar] [CrossRef]
- Guvenc, U.; Duman, S.; Hınıslıoglu, Y. Chaotic moth swarm algorithm. In Proceedings of the 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), IEEE, Gdynia, Poland, 3–5 July 2017. [Google Scholar]
- Zhou, Y.; Yang, X.; Ling, Y.; Zhang, J. Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation. Multimedia Tools Appl. 2018, 77, 23699–23727. [Google Scholar] [CrossRef]
- Fathy, A.; Elaziz, M.A.; Sayed, E.; Olabi, A.; Rezk, H. Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm. Energy 2019, 188, 116025. [Google Scholar] [CrossRef]
- Feng, Y.-H.; Wang, G.-G. Binary moth search algorithm for discounted {0-1} knapsack problem. IEEE Access 2018, 6, 10708–10719. [Google Scholar] [CrossRef]
- Strumberger, I.; Bacanin, N. Modified Moth Search Algorithm for Global Optimization Problems. Int. J. Comput. 2018, 3, 44–48. [Google Scholar]
- Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Hybridized moth search algorithm for constrained optimization problems. In Proceedings of the 2018 International Young Engineers Forum (YEF-ECE), IEEE, Costa da Caparica, Portugal, 4 May 2018. [Google Scholar]
- Strumberger, I.; Sarac, M.; Markovic, D.; Bacanin, N. Moth Search Algorithm for Drone Placement Problem. Int. J. Comput. 2018, 3, 75–80. [Google Scholar]
- Tsai, H.-C. Roach infestation optimization with friendship centers. Eng. Appl. Artif. Intell. 2015, 39, 109–119. [Google Scholar] [CrossRef]
- Obagbuwa, I.C.; Adewumi, A.O. A modified roach infestation optimization. In Proceedings of the 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Honolulu, HI, USA, 21–24 May 2014. [Google Scholar]
- Obagbuwa, I.C.; Adewumi, A.O.; Adebiyi, A.A. A dynamic step-size adaptation roach infestation optimization. In Proceedings of the 2014 IEEE International Advance Computing Conference, Gurgaon, India, 21–22 February 2014. [Google Scholar]
- Kaveh, A.; Eslamlou, A.D. Water strider algorithm: A new metaheuristic and applications. Structures 2020, 25, 520–541. [Google Scholar] [CrossRef]
- Kaveh, A.; Amirsoleimani, P.; Eslamlou, A.D.; Rahmani, P. Frequency-constrained optimization of large-scale dome-shaped trusses using chaotic water strider algorithm. Struct. 2021, 32, 1604–1618. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Ouyang, P.; Xing, S.-M.; Qi, L.-Y.; Khayatnezhad, M.; Jafari, H. Optimal structure design of a PV/FC HRES using amended Water Strider Algorithm. Energy Rep. 2021, 7, 2057–2067. [Google Scholar] [CrossRef]
- Kaveh, A. Water Strider Optimization Algorithm and Its Enhancement. In Advances in Metaheuristic Algorithms for Optimal Design of Structures; Kaveh, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 783–848. [Google Scholar]
- Luque-Chang, A.; Cuevas, E.; Fausto, F.; Zaldívar, D.; Pérez, M. Social Spider Optimization Algorithm: Modifications, Applications, and Perspectives. Math. Probl. Eng. 2018, 2018, 1–29. [Google Scholar] [CrossRef]
- Yu, J.J.; Li, V.O. A social spider algorithm for global optimization. Appl. Soft Comput. 2015, 30, 614–627. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Li, V.O. Parameter sensitivity analysis of social spider algorithm. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, Sendai, Japan, 25–28 May 2015. [Google Scholar]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants, hybrids and applications. Artif. Intell. Rev. 2017, 51, 119–148. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Coelho, L.D.S. Earthworm optimization algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2015, 1, 1. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Javaid, N.; Ullah, I.; Zarin, S.S.; Kamal, M.; Omoniwa, B.; Mateen, A. Differential-Evolution-Earthworm Hybrid Meta-heuristic Optimization Technique for Home Energy Management System in Smart Grid; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Faraz, S.H.; Ur Rehman, S.; Sarwar, M.A.; Ali, I.; Farooqi, M.; Javaid, N. Comparison of BFA and EWA in Home Energy Management System Using RTP; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Ali, M.; Abid, S.; Ghafar, A.; Ayub, N.; Arshad, H.; Khan, S.; Javaid, N. Earth Worm Optimization for Home Energy Management System in Smart Grid; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with information exchange. Memetic Comput. 2017, 10, 177–198. [Google Scholar] [CrossRef]
- Chansombat, S.; Musikapun, P.; Pongcharoen, P.; Hicks, C. A Hybrid Discrete Bat Algorithm with Krill Herd-based advanced planning and scheduling tool for the capital goods industry. Int. J. Prod. Res. 2018, 57, 6705–6726. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Wang, G.-G.; Sangaiah, A.K.; Rushdy, E. Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools Appl. 2017, 78, 3861–3884. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 2018, 48, 4047–4071. [Google Scholar] [CrossRef]
- Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M. Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 2018, 26, 1146–1153. [Google Scholar] [CrossRef]
- Das, S.R.; Kuhoo; Mishra, D.; Rout, M. An optimized feature reduction based currency forecasting model exploring the online sequential extreme learning machine and krill herd strategies. Phys. A Stat. Mech. its Appl. 2018, 513, 339–370. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vo, D.N. Improved social spider optimization algorithm for optimal reactive power dispatch problem with different objectives. Neural Comput. Appl. 2019, 32, 5919–5950. [Google Scholar] [CrossRef]
- El Aziz, M.A.; Hassanien, A.E. An improved social spider optimization algorithm based on rough sets for solving minimum number attribute reduction problem. Neural Comput. Appl. 2017, 30, 2441–2452. [Google Scholar] [CrossRef]
- Cuevas, E.; Cienfuegos, M. A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Syst. Appl. 2014, 41, 412–425. [Google Scholar] [CrossRef]
- Mirjalili, S.Z.; Saremi, S.; Mirjalili, S.M. Designing evolutionary feedforward neural networks using social spider optimization algorithm. Neural Comput. Appl. 2015, 26, 1919–1928. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Y.; Zhao, R. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. J. Ind. Manag. Optim. 2021, 17, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Xavier, V.M.A.; Annadurai, S. Chaotic social spider algorithm for load balance aware task scheduling in cloud computing. Clust. Comput. 2018, 22, 287–297. [Google Scholar]
- Elsayed, W.; Hegazy, Y.; Bendary, F.; El-Bages, M. Modified social spider algorithm for solving the economic dispatch problem. Eng. Sci. Technol. Int. J. 2016, 19, 1672–1681. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.-K.; Jung, N.-G.; Huang, S.-R.; Kim, J.-M. Application of Social Spider Algorithm to Optimize Train Energy. J. Electr. Eng. Technol. 2019, 14, 519–526. [Google Scholar] [CrossRef]
- Yu, J.J.; Li, V.O. A social spider algorithm for solving the non-convex economic load dispatch problem. Neurocomputing 2016, 171, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Houssein, E.H.; Helmy, B.E.-D.; Elngar, A.A.; Abdelminaam, D.S.; Shaban, H. An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation. IEEE Access 2021, 9, 56066–56092. [Google Scholar] [CrossRef]
- Fetouh, T.; Elsayed, A.M. Optimal Control and Operation of Fully Automated Distribution Networks Using Improved Tunicate Swarm Intelligent Algorithm. IEEE Access 2020, 8, 129689–129708. [Google Scholar] [CrossRef]
- Chelliah, J.; Kader, N. Optimization for connectivity and coverage issue in target-based wireless sensor networks using an effective multiobjective hybrid tunicate and salp swarm optimizer. Int. J. Commun. Syst. 2020, 34, e4679. [Google Scholar]
- Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. 2013, 43, 1–33. [Google Scholar] [CrossRef]
- Cuevas, E.; Echavarría, A.; Zaldívar, D.; Pérez-Cisneros, M. A novel evolutionary algorithm inspired by the states of matter for template matching. Expert Syst. Appl. 2013, 40, 6359–6373. [Google Scholar] [CrossRef]
- Corriveau, G.; Guilbault, R.; Tahan, A.; Sabourin, R. Review of phenotypic diversity formulations for diagnostic tool. Appl. Soft Comput. 2013, 13, 9–26. [Google Scholar] [CrossRef]
- Shir, O.M. Niching in Evolutionary Algorithms. In Handbook of Natural Computing; Rozenberg, G., Bäck, T., Kok, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1035–1069. [Google Scholar]
- Preuss, M. Niching prospects. In International Conference on Bioinspired Optimization Methods and Their Applications; Filipic, B., Silic, J., Eds.; Josef Stefan Institute: Lublijana, Slovenia, 2006. [Google Scholar]
- Silberholz, J.; Golden, B. Comparison of metaheuristics. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 625–640. [Google Scholar]
- Rice, J.R. The Algorithm Selection Problem. Adv. Comput. 1976, 15, 65–118. [Google Scholar]
- Misir, M.; Sebag, M. Alors: An algorithm recommender system. Artif. Intell. 2017, 244, 291–314. [Google Scholar] [CrossRef] [Green Version]
- Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malitsky, Y.; Fréchette, A.; Hoos, H.; Hutter, F.; Leyton-Brown, K.; Tierney, K.; et al. ASlib: A benchmark library for algorithm selection. Artif. Intell. 2016, 237, 41–58. [Google Scholar] [CrossRef] [Green Version]
- LaTorre, A.; Molina, D.; Osaba, E.; Del Ser, J.; Herrera, F. Fairness in bio-inspired optimization research: A prescription of methodological guidelines for comparing meta-heuristics. arXiv 2020, arXiv:2004.09969. [Google Scholar]
- Naruei, I.; Keynia, F. A new optimization method based on COOT bird natural life model. Expert Syst. Appl. 2021, 183, 115352. [Google Scholar] [CrossRef]
- Ewees, A.A.; Elaziz, M.A.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst. Appl. 2018, 112, 156–172. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Sharma, T.K.; Abraham, A. Artificial bee colony with enhanced food locations for solving mechanical engineering design problems. J. Ambient. Intell. Humaniz. Comput. 2019, 11, 267–290. [Google Scholar] [CrossRef]
- Yang, X.-S.; Hosseini, S.S.S.; Gandomi, A. Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K.; Moayedi, H.; Foong, L.K.; Assad, A. Sine cosine grey wolf optimizer to solve engineering design problems. Eng. Comput. 2021, 37, 3123–3149. [Google Scholar] [CrossRef]
- Huang, F.-Z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 2007, 186, 340–356. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Hernández-Ocana, B. Bacterial foraging for engineering design problems: Preliminary results. In Memorias del 4o Congreso Nacional de Computación Evolutiva (COMCEV’2008); Centro de Investigación en Matemáticas: Guanajuato, México, 2008. [Google Scholar]
- He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 2007, 20, 89–99. [Google Scholar] [CrossRef]
- Bernardino, H.S.; Barbosa, H.J.; Lemonge, A.C.; Fonseca, L.G. A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); IEEE: Hong Kong, China, 2008. [Google Scholar]
- Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
- Hedar, A.-R.; Fukushima, M. Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization. J. Glob. Optim. 2006, 35, 521–549. [Google Scholar] [CrossRef]
- Houssein, E.H.; Saad, M.R.; Hashim, F.; Shaban, H.; Hassaballah, M. Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 94, 103731. [Google Scholar] [CrossRef]
- Hwang, S.-F.; He, R.-S. A hybrid real-parameter genetic algorithm for function optimization. Adv. Eng. Informatics 2006, 20, 7–21. [Google Scholar] [CrossRef]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, W.; Wang, X. Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 2008, 178, 3043–3074. [Google Scholar] [CrossRef]
- Ragsdell, K.M.; Phillips, D.T. Optimal Design of a Class of Welded Structures Using Geometric Programming. J. Eng. Ind. 1976, 98, 1021–1025. [Google Scholar] [CrossRef]
- Yapici, H.; Cetinkaya, N. A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 2019, 78, 545–568. [Google Scholar] [CrossRef]
- Belegundu, A.D.; Arora, J.S. A study of mathematical programming methods for structural optimization. Part I: Theory. Int. J. Numer. Methods Eng. 1985, 21, 1583–1599. [Google Scholar] [CrossRef]
- Arora, J.S. Introduction to Optimum Design; Elsevier: Cambridge, MA, USA, 2004. [Google Scholar]
- Montague, M.; Aslam, J.A. Condorcet fusion for improved retrieval. In Proceedings of the Eleventh International Conference on Information and Knowledge Management, ACM, McLean, VA, USA, 4–9 December 2002. [Google Scholar]
- Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; Masegosa, A.D.; Perallos, A. Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems. Neurocomputing 2018, 271, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, A.P.; Napiorkowski, M.J.; Napiorkowski, J.J.; Osuch, M.; Kundzewicz, Z.W. Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models? Hydrol. Sci. J. 2017, 62, 606–625. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J. Some metaheuristics should be simplified. Inf. Sci. 2018, 427, 32–62. [Google Scholar] [CrossRef]
- Tzanetos, A.; Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 2021, 54, 1841–1862. [Google Scholar] [CrossRef]
- Lones, M.A. Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms. arXiv 2019, arXiv:1902.08001. [Google Scholar] [CrossRef] [Green Version]
- Van Thieu, N. The State-of-the-art MEta-Heuristics Algorithms in PYthon (MEALPY). 2021. Available online: https://pypi.org/project/mealpy/ (accessed on 2 August 2021).
- Molina, D.; Latorre, A.; Herrera, F. An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions. Cogn. Comput. 2018, 10, 517–544. [Google Scholar] [CrossRef]
- Veček, N.; Črepinšek, M.; Mernik, M. On the influence of the number of algorithms, problems, and independent runs in the comparison of evolutionary algorithms. Appl. Soft Comput. 2017, 54, 23–45. [Google Scholar] [CrossRef]
- Squillero, G.; Tonda, A. Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization. Inf. Sci. 2016, 329, 782–799. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-L.; Chen, L.; Deb, K.; Goodman, E. Investigating the Effect of Imbalance Between Convergence and Diversity in Evolutionary Multi-objective Algorithms. IEEE Trans. Evol. Comput. 2016, 21, 408–425. [Google Scholar] [CrossRef]
- Wright, J.; Jordanov, I. Convergence properties of quantum evolutionary algorithms on high dimension problems. Neurocomputing 2019, 326–327, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; He, J. Average Convergence Rate of Evolutionary Algorithms II: Continuous Optimization. arXiv 2018, arXiv:1810.11672. [Google Scholar]
- Shirakawa, S.; Nagao, T. Bag of local landscape features for fitness landscape analysis. Soft Comput. 2016, 20, 3787–3802. [Google Scholar] [CrossRef]
- Yang, S.; Li, K.; Li, W.; Chen, W.; Chen, Y. Dynamic Fitness Landscape Analysis on Differential Evolution Algorithm. In Bio-inspired Computing–Theories and Applications: 11th International Conference, BIC-TA 2016, Xi’an, China, 28–30 October 2016, Revised Selected Papers, Part II; Gong, M., Pan, L., Song, T., Zhang, G., Eds.; Springer: Singapore, 2016; pp. 179–184. [Google Scholar]
- Aleti, A.; Moser, I.; Grunske, L. Analysing the fitness landscape of search-based software testing problems. Autom. Softw. Eng. 2016, 24, 603–621. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Qu, B.; Yu, K.; Hu, Y. Mutation Strategy Selection Based on Fitness Landscape Analysis: A Preliminary Study; Springer: Singapore, 2020. [Google Scholar]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 2018, 31, 7665–7683. [Google Scholar] [CrossRef]
- Chen, Y.; He, J. Exploitation and Exploration Analysis of Elitist Evolutionary Algorithms: A Case Study. arXiv 2020, arXiv:2001.10932. [Google Scholar]
- Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A. A better balance in metaheuristic algorithms: Does it exist? Swarm Evol. Comput. 2020, 54, 100671. [Google Scholar] [CrossRef]
Algorithm | Source Code | Modifications and Improvements | Applications |
---|---|---|---|
Bird Mating Optimizer (BMO) [28] |
| ||
Chicken Swarm Optimization (CSO) [42] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/48204-cso, accessed on 7 January 2020 | ||
Crow Search Algorithm (CSA) [43] | (MATLAB–author source) https://www.mathworks.com/matlabcentral/fileexchange/57867-crow-search-algorithm-for-constrained-optimization, accessed on 19 June 2021 | ||
Cuckoo Search (CS) [29] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm, accessed on 4 February 2019 | ||
Cuckoo Optimization Algorithm (COA) [34] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/35635-cuckoo-optimization-algorithm, accessed on 4 February 2019 | ||
Emperor Penguin Optimizer (EPO) [55] |
| ||
Emperor Penguins Colony (EPC) [56] |
| ||
Harris Hawks Optimization (HHO) [46] | (MATLAB—author source) https://github.com/aliasgharheidaricom/Harris-Hawks-Optimization-Algorithm-and-Applications, accessed on 10 December 2020 | ||
Migrating Bird Optimization (MBO)[50] | (Java) http://mbo.dogus.edu.tr, accessed on 15 November 2020 |
|
|
Owl Search Algorithm (OSA) [109] |
| ||
Pigeon Inspired Optimization (PIO) [52] | (MATLAB) http://read.pudn.com/downloads713/sourcecode/math/2859919/Code%20of%20Basic%20PIO/Code%20of%20Basic%20PIO.txt__htm, accessed on 15 December 2020 | ||
Raven Roosting Optimization (RRO) [26] |
| ||
Satin Bowerbird Optimizer (SBO) [35] |
| ||
Seagull Optimization Algorithm (SeOA) [53] | (Matlab—author code) https://www.mathworks.com/matlabcentral/fileexchange/75180-seagull-optimization-algorithm-soa, accessed on 12 February 2021 |
|
|
Sooty Tern Optimization Algorithm (STOA) [54] | (Matlab—author code) https://jp.mathworks.com/matlabcentral/fileexchange/76667-sooty-tern-optimization-algorithm-stoa, accessed on 20 June 2021 |
Algorithm | Source Code | Modifications and Improvements | Applications |
---|---|---|---|
Bat Algorithm (BA) [18] | (Python) https://github.com/buma/BatAlgorithm, accessed on 20 December 2019 |
| |
Blind Naked Mole Rats (BNMR) [146] |
| ||
Chimp optimization algorithm (ChOA), [140] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/76763, accessed on 20 August 2021 |
| |
Directed Artificial Bat Algorithm (DABA) [130] | travelling salesman problem [130] | ||
Dolphin Echolocation (DEO) [132] |
| ||
Dynamic Virtual Bats Algorithm (DVBA) [131] | parameter setting [170] | ||
Elephant Herding Optimization (EHO) [148,149] | (MATLAB—author source) http://www.mathworks.com/matlabcentral/fileexchange/53486, accessed on 17 January 2020 | ||
Elephant Search Algorithm (ESA) [147] |
| ||
Grey Wolf Optimizer (GWO) [136] | (MATLAB—author source) http://www.alimirjalili.com/Projects.html, accessed on 6 June 2021 | ||
Lion’s Algorithm (LA) [143] | |||
Lion Optimization Algorithm (LOA) [144] |
| ||
Lion Pride Optimization Algorithm (LPOA) [145] | |||
Sperm Whale Algorithm (SWA) [133] | |||
Spider Monkey Optimization (SMO) [139] | (MATLAB, C++, Python–author sources) http://smo.scrs.in, accessed on 10 January 2021 |
| |
Spotted Hyena Optimizer (SHO) [142] |
| ||
Squirrel Search Algorithm (SSA) [109] |
| ||
Whale Optimization Algorithm (WOA) [134] | (MATLAB—author source) http://www.alimirjalili.com/Projects.html, accessed on 6 June 2021 |
Algorithm | Source Code | Modifications and Improvements | Applications |
---|---|---|---|
Animals Migration Optimization (AMO) [235] | |||
Backtracking Search Algorithm Optimization (BSA) [227] | (MATLAB—author source) https://www.mathworks.com/matlabcentral/fileexchange/44842, accessed on 10 December 2019 | ||
Biogeography based Optimization (BBO) [233] | |||
Competition over Resources (COR) [230] | (MATLAB—author source) http://freesourcecode.net/matlabprojects/71991/competition-over-resources--a-new-optimization-algorithm-based-on-animals-behavioral-ecology-in-matlab, accessed on 25 June 2020 | ||
Hunting Search (HuS) [226] |
| ||
Marine Predators Algorithm [229] | (MATLAB–author source) au.mathworks.com/matlabcentral/fileexchange/74578, accessed on 08 August 2021 |
| |
Optimal Foraging Algorithm (OFA) [25] | (MATLAB-author source) https://www.mathworks.com/matlabcentral/fileexchange/62593, accessed on 24 April 2020 |
Algorithm | Source Code | Modifications and Improvements | Applications |
---|---|---|---|
Ant Lion Optimizer (ALO) [291] | (MATLAB-author source) http://www.alimirjalili.com/ALO.html, accessed on 6 June 2021 | ||
Bee Colony Inspired Algorithm (BCiA) [266] |
| ||
Bumble Bee Mating Optimization (BBMO) [270] | |||
Butterfly Optimizer (BO) [281] | |||
Butterfly Optimization Algorithm (BOA) [283] | (MATLAB-author source) https://www.mathworks.com/matlabcentral/fileexchange/68209-butterfly-optimization-algorithm-boa/, accessed on 12 December 2019 |
| |
Pity Beetle Algorithm (PBA) [295] | |||
Dragonfly Algorithm (DA) [264] | (MATLAB-author source) http://www.alimirjalili.com/DA.html, accessed on 6 June 2021 | ||
Drosophila Food Search Optimization (DFO) [274] |
| ||
Firefly algorithm (FF) [37] | (MATLAB) http://yarpiz.com/259/ypea112-firefly-algorithm, accessed on 12 December 2019 |
| |
Fruit Fly Optimization (FOA) [276] | (MATLAB—author source) http://www.oitecshop.byethost16.com/FOA.html?i=1, accessed on 15 June 2020 | ||
Grasshopper Optimization Algorithm (GOA) [290] | (MATLAB-author source) http://www.alimirjalili.com/GOA.html, accessed on 6 June 2021 | ||
Locust Swarm (LS1) [288] |
| ||
Locust Swarm (LS2) [289] | (MATLAB-author source) https://www.mathworks.com/matlabcentral/fileexchange/53271-locust-search-ls-algorithm, accesed on: 20 December 2019 |
| |
Mayfly optimization algorithm (MA) [341] | (MATLAB-author source) https://in.mathworks.com/matlabcentral/fileexchange/76902-a-mayfly-optimization-algorithm, accessed on 15 August 2021 |
| |
Monarch Butterfly Optimization (MBO) [279] | (C++, MATLAB) https://github.com/ggw0122/Monarch-Butterfly-Optimization, accessed on 12 December 2019 | ||
Mosquito host-seeking algorithm (MHSA) [277] |
|
| |
Moth Flame Optimization (MFO) [284] | (MATLAB-author source) http://www.alimirjalili.com/MFO.html, accessed on 6 June 2021 | ||
Moth Swarm Algorithm (MSA) [286] | (MATLAB-author source) https://www.mathworks.com/matlabcentral/fileexchange/57822-moth-swarm-algorithm-msa, accessed on 8 February 2020 | ||
Moth Search (MS) algorithm [287] | (MATLAB-author source) https://in.mathworks.com/matlabcentral/fileexchange/59010-moth-search-ms-algorithm, accessed on 8 February 2020 | ||
Roach Infestation Optimization (RIO) [292] | (C#, VB) https://msdn.microsoft.com/en-us/magazine/mt632275.aspx, accessed on 6 February 2020 | ||
Water strider algorithm (WfSA) [370] |
|
|
Algorithm | C | L | Maintaining | OD | Description of the Mechanisms | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Niching | Non-Niching | |||||||||||
Pop. | Sel. | Crs. | H. | Fit. | Rep. | Pres. | H. | |||||
Backtracking Search Algorithm Optimization (BSA) | x | x | x |
| ||||||||
Bat Algorithm (BA) | x | x |
| |||||||||
Bee Colony Inspired Algorithm (BCiA) | x | x |
| |||||||||
Bird Mating Optimizer (BMO) | x | x |
| |||||||||
Blind Naked Mole Rats (BNMR) | x |
| ||||||||||
Bumblebees (B) | x |
| ||||||||||
Bumble Bee Mating Optimization (BBMO) | x |
| ||||||||||
Chicken Swarm Optimization (CSO) | x |
| ||||||||||
Competition over Resources (COR) | x | x |
| |||||||||
Cuckoo Search (CS) | x |
| ||||||||||
Cuckoo Optimization Algorithm (COA) | x |
| ||||||||||
Drosophila Food Search Optimization (DFO) | x |
| ||||||||||
Elephant Herding Optimization (EHO) | x |
| ||||||||||
Elephant Search Algorithm (ESA) | x |
| ||||||||||
Grey Wolf Optimizer (GWO) |
| |||||||||||
Hunting Search (HuS) | x |
| ||||||||||
Krill Herd Algorithm (KHA) | x |
| ||||||||||
Locust Swarm (LS2) | x |
| ||||||||||
Lion’s Algorithm (LA) | x | x |
| |||||||||
Lion Optimization Algorithm (LOA) | x | x |
| |||||||||
Lion Pride Optimization Algorithm (LPOA) | x |
| ||||||||||
Monarch Butterfly Optimization (MBO) | x | x |
| |||||||||
Moth Swarm Algorithm (MSA) | x |
| ||||||||||
Moth Search (MS) algorithm | x | x |
| |||||||||
Pigeon Inspired Optimization (PIO) | x |
| ||||||||||
Satin Bowerbird Optimizer (SBO) | x |
| ||||||||||
Sperm Whale Algorithm (SWA) | x |
| ||||||||||
Social Spider Optimization (SSO) | x | x |
| |||||||||
Spider Monkey Optimization (SMO) | x |
| ||||||||||
Spotted Hyena Optimizer (SHO) | x |
| ||||||||||
Squirrel Search Algorithm (SSA) | x |
|
Problem | Decision Variables | Inequality Constraints |
---|---|---|
Tension/Compression spring | 3 (diameter, mean coil diameter, number of active coils) | 4 |
Pressure vessel design | 4 (thinckness of the shell, thinkness of th head, inner radius, length of the cylindrical section) | 4 |
Welded beam design | 4 (thikness of the weld, length of the attached part of the bar, height of the bar and thickess of the bar) | 7 |
Algorithms | Reported Work | Modified Version | Ts | Th | R | L | Optimal Cost |
---|---|---|---|---|---|---|---|
Sooty Tern Optimization Algorithm (STOA) [54] | [54] | No | 0.778095 | 0.38324 | 40.31511 | 200 | 5879.1253 |
Emperor Pinguin Optimization (EPO) [55] | [55] | No | 0.778099 | 0.383241 | 40.31512 | 200 | 5880.07 |
Chameleon Swarm Algorithm (ChSA) [224] | [224] | No | 12.450698 | 6.154387 | 40.31961 | 200 | 5885.3327 |
Memory based Dragonfly algorithm (MHDA) [313] | [313] | Yes | 0.778169 | 0.384649 | 40.3196 | 200 | 5885.3353 |
COOT [412] | [412] | No | 0.77817 | 0.384651 | 40.31961 | 200 | 5885.3487 |
Marine Predator Algorithm (MPA) -continuous variant [229] | [229] | No | 0.77816876 | 0.3846497 | 40.31962 | 199.99999 | 5885.3353 |
Spotted Hyena Optimizer (SHO) [142] | [55] | No | 0.77821 | 0.384889 | 40.31504 | 200 | 5885.5773 |
Modified Spider Monkey Optimization (SMONM) [203] | [412] | Yes | 0.778322 | 0.384725 | 40.32759 | 199.8889 | 5885.595 |
African Vulture Optimization Algorithm (AVOA) [57] | [57] | No | 0.778954 | 0.3850374 | 40.36031 | 199.43429 | 5886.67659 |
Grey Wolf Optimizer (GWO) [136] | [55] | No | 0.779035 | 0.38466 | 40.32779 | 199.65029 | 5889.3689 |
Dragonfly Algorithm (DA) [264] | [313] | No | 0.782825 | 0.384649 | 40.3196 | 200 | 5923.11 |
Aquila Optimization (AO) [47] | [47] | No | 1.0540 | 0.182806 | 59.6219 | 38.8050 | 5949.2258 |
Improved Grasshoper Oprimization (OBLGOA) [413] | [412] | Yes | 0.81622 | 0.4035 | 42.29113 | 174.81119 | 5966.6716 |
Slime Mould Algorithm (SMA) [414] | [414] | No | 0.7931 | 0.3932 | 40.6711 | 196.2178 | 5994.1857 |
Harris Hawk Optimization (HHO) [46] | [412] | No | 0.81758383 | 0.4072927 | 42.09174 | 176.71963 | 6000.46259 |
Improved Artificial bee Colony (I-ABC greedy) [415] | [412] | Yes | 0.8125 | 0.4375 | 42.0984 | 176.6369 | 6059.7124 |
Firefly Algorithm (FA) [416] | [412] | No | 0.8125 | 0.4375 | 42.09844 | 176.63659 | 6059.7143 |
Moth-flame Optimization (MFO) [284] | [412] | No | 0.8125 | 0.4375 | 42.09844 | 176.63659 | 6059.7143 |
Marine Predator Algorithm (MPA) -mixed integer variant [229] | [229] | No | 0.8125 | 0.4375 | 42.09844 | 176.63660 | 6059.7144 |
Sine-Cosine Grey Wolf Optimizer (SC-GWO) [417] | [412] | Yes | 0.8125 | 0.4375 | 42.0984 | 176.6370 | 6059.7179 |
Co-evolutionary Differential Evolution (CDE) [418] | [229] | Yes | 0.8125 | 0.4375 | 42.09841 | 176.6376 | 6059.734 |
Whale Optimization Algorithm (WOA) [134] | [412] | No | 0.8125 | 0.4375 | 42.09826 | 176.63899 | 6059.741 |
Bacterial foraging Optimization (BFOA) [419] | [229] | No | 0.8125 | 0.4375 | 42.09639 | 176.68323 | 6060.46 |
Co-evolutionary Particle Swarm Optimization (CPSO) [420] | [313] | Yes | 0.8125 | 0.4375 | 42.09126 | 176.7465 | 6061.077 |
Artificial Immune System-Genetic Algorithm (HGA-1) [421] | [229] | Yes | 0.8125 | 0.4375 | 42.0492 | 177.2522 | 6065.821 |
Artificial Immune System-Genetic Algorithm (HGA-2) [421] | [229] | Yes | 1.125 | 0.5625 | 58.1267 | 44.5941 | 6832.583 |
Harmony Search (HS) [422] | [229] | No | 1.125 | 0.625 | 58.2789 | 43.7549 | 7198.433 |
Algorithms | Reported Work | Modified Version | τ | σ | Pc | δ | Optimal Cost |
---|---|---|---|---|---|---|---|
Aquila Optimization (AO) [47] | [47] | No | 0.1631 | 3.3652 | 9.0202 | 0.2067 | 1.6566 |
Butterfly Optimization Algorithm (BOA) [283] | [283] | No | 0.1736 | 2.969 | 8.7637 | 0.2188 | 1.6644 |
COOT [412] | [412] | No | 0.19883 | 3.33797 | 9.19199 | 0.19883 | 1.6703 |
Memory based Dragon Fly algorithm(MHDA)) [313] | [313] | Yes | 0.20573 | 3.25312 | 9.03662 | 0.20573 | 1.69525 |
Slime Mould algorithm (SMA) [414] | [414] | No | 0.2054 | 3.2589 | 9.0384 | 0.2058 | 1.696 |
Dragonfly Algorithm (DA) [264] | [313] | No | 0.19429 | 3.46681 | 9.04543 | 0.2057 | 1.70808 |
Tunicate Swarm Algorithm (TSA) [380] | [412] | No | 0.20329 | 3.47114 | 9.0351 | 0.20115 | 1.72102 |
Seagull optimization algorithm (SOA) [53] | [53] | No | 0.205408 | 3.472316 | 9.035208 | 0.20114 | 1.723485 |
Emperor Pinguin Optimization (EPO) [55] | [55] | No | 0.205411 | 3.472341 | 9.035215 | 0.20115 | 1.723589 |
Sooty Tern Optimization Algorithm (STOA) [54] | [54] | No | 0.205415 | 3.472346 | 9.03522 | 0.20116 | 1.72359 |
Improved Artificial bee Colony (I-ABC greedy) [415] | [412] | Yes | 0.20573 | 3.47049 | 9.03662 | 0.20573 | 1.72482 |
Co-evolutionary Particle Swarm Optimization (CPSO) [420] | [313] | Yes | 0.20573 | 3.47049 | 9.03662 | 0.20573 | 1.72485 |
Modified Artificial Bee Colony (ABC) [263] | [313] | Yes | 0.20573 | 3.47049 | 9.03662 | 0.20573 | 1.72485 |
Modified Spider Monkey Optimization (SMONM) [203] | [412] | Yes | 0.20573 | 3.47049 | 9.03662 | 0.20573 | 1.72485 |
Chameleon Swarm Algorithm (ChSA) [224] | [224] | No | 0.205730 | 3.470489 | 9.036624 | 0.20573 | 1.724852 |
African Vulture Optimization Algorithm (AVOA) [57] | [57] | No | 0.20573 | 3.470474 | 9.03662 | 0.20573 | 1.724852 |
Moth-flame Optimization (MFO) [284] | [370] | No | 0.20573 | 3.47049 | 9.03662 | 0.20573 | 1.7249 |
Water Strider Algorithm (WSA) [370] | [370] | No | 0.20573 | 3.47049 | 9.03662 | 0.20573 | 1.7249 |
Marine Predator Algorithm (MPA) [229] | [229] | No | 0.20573 | 3.47051 | 9.03662 | 0.20573 | 1.72485 |
Salp Swarm Algorithm (SSA) [11] | [414] | No | 0.2057 | 3.4714 | 9.0366 | 0.2057 | 1.7249 |
Derivative free Simulated Annealing (SA) [423] | [313] | Yes | 0.20564 | 3.47258 | 9.03662 | 0.20573 | 1.725 |
Spotted Hyena Optimizer(SHO) [142] | [412] | No | 0.20556 | 3.47485 | 9.0358 | 0.20581 | 1.72566 |
Improved Grasshopper Optimization Algorithm (OBLGOA) [413] | [412] | Yes | 0.20577 | 3.47114 | 9.03273 | 0.20591 | 1.7257 |
Grey Wolf Optimizer (GWO) [136] | [414] | No | 0.2057 | 3.4784 | 9.0368 | 0.2058 | 1.7262 |
Whale Optimization Algorithm (WOA) [134] | [134] | No | 0.205396 | 3.484293 | 9.037426 | 0.20627 | 1.730499 |
Harris Hawk Optimization (HHO) [46] | [412] | No | 0.20404 | 3.53106 | 9.02746 | 0.20615 | 1.73199 |
Sailfish Optimizer (SFO) [222] | [222] | No | 0.2038 | 3.6630 | 9.0506 | 0.2064 | 1.73231 |
Co-evolutionary Differential Evolution (CDE) [418] | [412] | Yes | 0.20314 | 3.543 | 9.0335 | 0.20618 | 1.73346 |
Levy Flight Distribution (LFD) [424] | [412] | No | 0.1857 | 3.907 | 9.1552 | 0.2051 | 1.77 |
Harmony Search and Genetic Algorithm (HSA-GA) [425] | [229] | Yes | 0.2231 | 1.5815 | 12.8468 | 0.2245 | 2.25 |
Improved harmony Search (HS) [426] | [283] | Yes | 0.2442 | 6.2231 | 8.2915 | 0.2443 | 2.3807 |
Differential Evolution with stochastic selection (DSS-DE) [427] | [229] | Yes | 0.2444 | 6.1275 | 8.2915 | 0.2444 | 2.381 |
APPROX [428] | [134] | No | 0.2444 | 6.2189 | 8.2915 | 0.2444 | 2.3815 |
Ragsdell [428] | [370] | No | 0.2455 | 6.196 | 8.2915 | 0.2444 | 2.38154 |
David [428] | [134] | No | 0.2434 | 6.2552 | 8.2915 | 0.2444 | 2.3841 |
Bacterial Foraging Optimization (BFOA) [419] | [229] | No | 0.2057 | 3.4711 | 9.0367 | 0.2057 | 2.3868 |
Simplex [428] | [370] | No | 0.2792 | 5.6256 | 7.7512 | 0.2796 | 2.5307 |
Random [428] | [134] | No | 0.4575 | 4.7313 | 5.0853 | 0.66 | 4.1185 |
Algorithms | Reported Work | Modified Version | d | D | N | Optimal Cost |
---|---|---|---|---|---|---|
Aquila Optimization (AO) [47] | [47] | No | 0.050243 | 0.35262 | 10.5425 | 0.011165 |
Butterfly Optimization Algorithm (BOA) [283] | [283] | No | 0.051343 | 0.334871 | 12.9227 | 0.011965 |
Emperor Pinguin Optimization (EPO) [55] | [55] | No | 0.051087 | 0.342908 | 12.0898 | 0.012656 |
Sooty Tern Optimization Algorithm (STOA) [54] | [54] | No | 0.05109 | 0.34291 | 12.09 | 0.012656 |
FireFly algorithm (BA) [416] | [412] | No | 0.05169 | 0.35673 | 11.2885 | 0.012665 |
Pathfinder algorithm (PFA) [429] | [229] | No | 0.051726 | 0.357629 | 11.235724 | 0.012665 |
Marine Predator Algorithm (MPA) [229] | [229] | No | 0.0517244 | 0.35757003 | 11.2391955 | 0.012665 |
Improved Artificial bee Colony (I-ABC greedy) [415] | [412] | Yes | 0.051686 | 0.356014 | 11.202765 | 0.012665 |
COOT [412] | [412] | No | 0.0516527 | 0.3558442 | 11.340383 | 0.012665 |
African Vulture Optimization Algorithm (AVOA) [57] | [57] | No | 0.051669 | 0.3562553 | 11.316126 | 0.0126652 |
Chameleon Swarm Algorithm (ChSA) [224] | [224] | No | 0.051778 | 0.358851 | 11.164981 | 0.0126653 |
Harris Hawk Optimization (HHO) [46] | [412] | No | 0.0517963 | 0.3593053 | 11.138859 | 0.01266 |
Grey Wolf Optimizer (GWO) [136] | [412] | No | 0.05169 | 0.356737 | 11.28885 | 0.012666 |
Modified Spider Monkey Optimization (SMONM) [203] | [412] | Yes | 0.051918 | 0.362248 | 10.97194 | 0.012666 |
Moth-flame Optimization (MFO) [284] | [412] | No | 0.0519944 | 0.36410932 | 10.868422 | 0.012666 |
Artificial Immune System-Genetic Algorithm (HGA-1) [421] | [229] | Yes | 0.051302 | 0.347475 | 11.852177 | 0.012668 |
Co-evolutionary Differential Evolution (CDE) [418] | [229] | Yes | 0.051609 | 0.354714 | 11.410831 | 0.01267 |
Improved harmony Search (HS) [426] | [283] | Yes | 0.051154 | 0.349871 | 12.076432 | 0.012670 |
Bacterial Foraging Optimization (BFOA) [420] | [229] | No | 0.051825 | 0.359935 | 11.107103 | 0.012671 |
Sine-Cosine Grey Wolf Optimizer (SC-GWO) [417] | [412] | Yes | 0.051511 | 0.352376 | 11.5526 | 0.012672 |
Spotted Hyena Optimizer (SHO) [142] | [412] | No | 0.051144 | 0.343751 | 12.0955 | 0.012674 |
Co-evolutionary Particle Swarm Optimization (CPSO) [420] | [229] | Yes | 0.051728 | 0.357644 | 11.244543 | 0.012674 |
Whale Optimization Algorithm (WOA) [134] | [412] | No | 0.051207 | 0.345215 | 0.004032 | 0.012676 |
Salp Swarm Algorithm (SSA) [11] | [412] | No | 0.051207 | 0.345215 | 12.004032 | 0.012676 |
Improved Grasshopper Optimization Algorithm (OBLGOA) [413] | [412] | Yes | 0.0530178 | 0.38953229 | 9.6001616 | 0.012701 |
Mathematical_optimization [430] | [283] | - | 0.053396 | 0.39918 | 9.1854 | 0.012730 |
Constraint_correction [431] | [283] | - | 0.05 | 0.3159 | 14.25 | 0.012833 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoi, E.N.; Dafinescu, V. Review of Metaheuristics Inspired from the Animal Kingdom. Mathematics 2021, 9, 2335. https://doi.org/10.3390/math9182335
Dragoi EN, Dafinescu V. Review of Metaheuristics Inspired from the Animal Kingdom. Mathematics. 2021; 9(18):2335. https://doi.org/10.3390/math9182335
Chicago/Turabian StyleDragoi, Elena Niculina, and Vlad Dafinescu. 2021. "Review of Metaheuristics Inspired from the Animal Kingdom" Mathematics 9, no. 18: 2335. https://doi.org/10.3390/math9182335
APA StyleDragoi, E. N., & Dafinescu, V. (2021). Review of Metaheuristics Inspired from the Animal Kingdom. Mathematics, 9(18), 2335. https://doi.org/10.3390/math9182335