Automatic Superpixel-Based Clustering for Color Image Segmentation Using q-Generalized Pareto Distribution under Linear Normalization and Hunger Games Search
Abstract
:1. Introduction
- Proposed an superpixel-based automatic clustering method and applied it for color image segmentation.
- Present an extension for Generalized Pareto distribution under linear normalization (GPDL), named q-GPDL. In addition, deduce its quantile function and estimate its parameters using Maximum Likelihood Estimation.
- Improve the behavior of DPC by using q-GPDL.
- Apply Hunger Games Search (HGS) as clustering method to determine the center of each cluster then segmented the image.
- Evaluate the performance of the developed method using real-world datasets and compared it with other MH techniques and state-of-the-art methods.
2. Background
2.1. Clustering Problem Formulation for Image Segmentation
2.2. Generalized Pareto Distribution under Linear Normalization (GPDL)
2.3. Hunger Games Search
Algorithm 1 Steps of HGS. |
|
3. Proposed Method
3.1. q-Generalized Pareto Distribution under Linear Normalization (q-GPDL)
3.1.1. The Quantile Function
3.1.2. Maximum Likelihood Estimation (MLE)
3.2. Framework of the Developed ASCQPHGS Method
3.2.1. Initial Stage
3.2.2. Encoding of Solution in HGS
3.2.3. Compute Fitness Value
3.2.4. Update Population
Algorithm 2 Steps of developed ASCQPHGS clustering for color segmentation. |
|
4. Experimental and Results
4.1. Datasets Description
4.2. Performance Metrics
- probabilistic rand index (): It computes the the similarity of labels and it is applied to compute the classification of pixel-wise.
- variation of information (): is applied for clustering comparison and it depends on the distance of the conditional entropy between results of two clusters.
- global consistency error (GCE): It measures the global error between two segmented images that are mutually consistent.
- boundary displacement error (BDE): It computes the average of the displacement error of pixels between two segmented images.
4.3. Results and Discussion
4.4. Comparison with Literature Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhuang, H.; Low, K.S.; Yau, W.Y. Multichannel pulse-coupled-neural-network-based color image segmentation for object detection. IEEE Trans. Ind. Electron. 2011, 59, 3299–3308. [Google Scholar] [CrossRef]
- Ahmed, A.; Jalal, A.; Rafique, A.A. Salient Segmentation based Object Detection and Recognition using Hybrid Genetic Transform. In Proceedings of the 2019 International Conference on Applied and Engineering Mathematics (ICAEM), Taxila, Pakistan, 27–29 August 2019; pp. 203–208. [Google Scholar]
- Li, M.; Qin, J.; Li, D.; Chen, R.; Liao, X.; Guo, B. VNLSTM-PoseNet: A novel deep ConvNet for real-time 6-DOF camera relocalization in urban streets. Geo-Spat. Inf. Sci. 2021, 1–15. [Google Scholar] [CrossRef]
- Xu, L.; Ma, A. Coarse-to-fine waterlogging probability assessment based on remote sensing image and social media data. Geo-Spat. Inf. Sci. 2021, 24, 279–301. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; AA Al-Qaness, M.; Abo Zaid, E.O.; Lu, S.; Ali Ibrahim, R.; Ewees, A.A. Automatic clustering method to segment COVID-19 CT images. PLoS ONE 2021, 16, e0244416. [Google Scholar] [CrossRef] [PubMed]
- dela Torre, D.M.G.; Gao, J.; Macinnis-Ng, C. Remote sensing-based estimation of rice yields using various models: A critical review. Geo-Spat. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Zhang, J. End-to-end trainable network for superpixel and image segmentation. Pattern Recognit. Lett. 2020, 140, 135–142. [Google Scholar] [CrossRef]
- Conze, P.H.; Tilquin, F.; Lamard, M.; Heitz, F.; Quellec, G. Unsupervised learning-based long-term superpixel tracking. Image Vis. Comput. 2019, 89, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, W.; Xing, W.; Zhang, S. Visual object tracking with multi-scale superpixels and color-feature guided kernelized correlation filters. Signal Process. Image Commun. 2018, 63, 44–62. [Google Scholar] [CrossRef]
- Thirumavalavan, S.; Jayaraman, S. An improved teaching–learning based robust edge detection algorithm for noisy images. J. Adv. Res. 2016, 7, 979–989. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Q.; Member, I.; Kong, F. Superpixel-feature-based multiple kernel sparse representation for hyperspectral image classification. Signal Process. 2020, 176, 107682. [Google Scholar] [CrossRef]
- Jing, H.; He, X.; Han, Q.; Abd El-Latif, A.A.; Niu, X. Saliency detection based on integrated features. Neurocomputing 2014, 129, 114–121. [Google Scholar] [CrossRef]
- Abd EL-Latif, A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E. Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption. Phys. A Stat. Mech. Appl. 2020, 547, 123869. [Google Scholar] [CrossRef]
- Li, L.; Abd-El-Atty, B.; Abd El-Latif, A.A.; Ghoneim, A. Quantum color image encryption based on multiple discrete chaotic systems. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017; pp. 555–559. [Google Scholar]
- Abd El-Latif, A.A.; Yan, X.; Li, L.; Wang, N.; Peng, J.L.; Niu, X. A new meaningful secret sharing scheme based on random grids, error diffusion and chaotic encryption. Opt. Laser Technol. 2013, 54, 389–400. [Google Scholar] [CrossRef]
- Abd el Latif, A.A.; Abd-el Atty, B.; Amin, M.; Iliyasu, A.M. Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Sci. Rep. 2020, 10, 1930. [Google Scholar] [CrossRef]
- Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.R.; Wang, W.A.; Lin, S.Y.; Lin, Y.Y. USEQ: Ultra-fast superpixel extraction via quantization. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 1965–1970. [Google Scholar]
- Di, S.; Liao, M.; Zhao, Y.; Li, Y.; Zeng, Y. Image superpixel segmentation based on hierarchical multi-level LI-SLIC. Opt. Laser Technol. 2021, 135, 106703. [Google Scholar] [CrossRef]
- Fouad, S.; Randell, D.; Galton, A.; Mehanna, H.; Landini, G. Unsupervised superpixel-based segmentation of histopathological images with consensus clustering. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 767–779. [Google Scholar]
- Mi, L.; Chen, Z. Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation. ISPRS J. Photogramm. Remote Sens. 2020, 159, 140–152. [Google Scholar] [CrossRef]
- Huang, J.Y.; Ding, J.J. Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map. In Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November–4 December 2020. [Google Scholar]
- Mittal, H.; Saraswat, M. An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering. Swarm Evol. Comput. 2019, 45, 15–32. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mali, K. SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images. Expert Syst. Appl. 2021, 167, 114142. [Google Scholar] [CrossRef]
- Lei, T.; Liu, P.; Jia, X.; Zhang, X.; Meng, H.; Nandi, A.K. Automatic fuzzy clustering framework for image segmentation. IEEE Trans. Fuzzy Syst. 2019, 28, 2078–2092. [Google Scholar] [CrossRef] [Green Version]
- Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; World Scientific: Singapore, 2000. [Google Scholar]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provost, S.B.; Saboor, A.; Cordeiro, G.M.; Mansoor, M. On the q-generalized extreme value distribution. REVSTAT-Stat. J. 2018, 16, 45–70. [Google Scholar]
- Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 2018, 27, 1753–1766. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.H.; Su, M.C.; Lai, E. A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 2004, 7, 205–220. [Google Scholar] [CrossRef]
- Ewees, A.A.; Abualigah, L.; Yousri, D.; Algamal, Z.Y.; Al-qaness, M.A.; Ibrahim, R.A.; Abd Elaziz, M. Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model. Eng. Comput. 2021, 1–15. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H.; Musirin, I.; Daud, M.R. Barnacles mating optimizer: An evolutionary algorithm for solving optimization. In Proceedings of the 2018 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 20 October 2018; pp. 99–104. [Google Scholar]
- Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Nabil, N.; Ewees, A.A.; Lu, S. Automatic data clustering based on hybrid atom search optimization and sine-cosine algorithm. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 2315–2322. [Google Scholar]
- AbuShanab, W.S.; Abd Elaziz, M.; Ghandourah, E.I.; Moustafa, E.B.; Elsheikh, A.H. A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials. J. Mater. Res. Technol. 2021, 14, 1482–1493. [Google Scholar] [CrossRef]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [Green Version]
- Gould, S.; Fulton, R.; Koller, D. Decomposing a scene into geometric and semantically consistent regions. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009; pp. 1–8. [Google Scholar]
- Wang, X.; Tang, Y.; Masnou, S.; Chen, L. A global/local affinity graph for image segmentation. IEEE Trans. Image Process. 2015, 24, 1399–1411. [Google Scholar] [CrossRef]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Lei, T.; Jia, X.; Zhang, Y.; He, L.; Meng, H.; Nandi, A.K. Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 2018, 26, 3027–3041. [Google Scholar] [CrossRef] [Green Version]
- Zaixin, Z.; Lizhi, C.; Guangquan, C. Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation. IET Image Process. 2014, 8, 150–161. [Google Scholar] [CrossRef]
- Guo, F.F.; Wang, X.X.; Shen, J. Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation. IET Image Process. 2016, 10, 272–279. [Google Scholar] [CrossRef]
- Chatzis, S.P.; Varvarigou, T.A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 2008, 16, 1351–1361. [Google Scholar] [CrossRef]
- Cai, W.; Chen, S.; Zhang, D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 2007, 40, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Krinidis, S.; Chatzis, V. A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 2010, 19, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.R.; Pal, K.; Keller, J.M.; Bezdek, J.C. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 2005, 13, 517–530. [Google Scholar] [CrossRef]
- Linda, O.; Manic, M. General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 2012, 20, 883–897. [Google Scholar] [CrossRef]
- Gong, M.; Liang, Y.; Shi, J.; Ma, W.; Ma, J. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 2012, 22, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Mishro, P.K.; Agrawal, S.; Panda, R.; Abraham, A. A novel type-2 fuzzy C-means clustering for brain MR image segmentation. IEEE Trans. Cybern. 2020, 51, 3901–3912. [Google Scholar] [CrossRef]
RI | VOI | GCE | BDE | |
---|---|---|---|---|
DPCQGPDL | 0.8173 | 1.9702 | 0.2587 | 8.6165 |
DPC | 0.8184 | 1.9679 | 0.2592 | 8.5876 |
FCMQGPDL | 0.8184 | 1.9686 | 0.2593 | 8.5914 |
FCM | 0.7537 | 2.0523 | 0.2198 | 12.9771 |
SMA | 0.8276 | 1.8685 | 0.2223 | 8.9728 |
BMO | 0.8232 | 1.8743 | 0.2198 | 9.4888 |
ASO | 0.8296 | 1.8700 | 0.2264 | 9.0037 |
ASOPSO | 0.8339 | 1.8614 | 0.2270 | 8.5360 |
ASCQPHGS | 0.8361 | 1.8561 | 0.2077 | 8.3777 |
RI | VOI | GCE | BDE | |
---|---|---|---|---|
DPCQGPDL | 0.6540 | 1.8808 | 0.2447 | 15.6244 |
DPC | 0.6517 | 1.8864 | 0.2443 | 15.8201 |
FCMQGPDL | 0.6545 | 1.8804 | 0.2049 | 15.6116 |
FCM | 0.6142 | 1.8602 | 0.2068 | 17.7728 |
SMA | 0.6227 | 1.8825 | 0.2213 | 16.9126 |
BMO | 0.6179 | 1.8843 | 0.2188 | 17.1358 |
ASO | 0.6269 | 1.8819 | 0.2253 | 16.8736 |
ASOPSO | 0.6281 | 1.8858 | 0.2264 | 16.5644 |
ASCQPHGS | 0.6688 | 1.8541 | 0.2169 | 15.5535 |
DPCQGPDL | DPC | FCMQGPDL | FCM | SMA | BMO | ASO | ASOPSO | ASCQPHGS | |
---|---|---|---|---|---|---|---|---|---|
RI | 4.5 | 4.75 | 5.75 | 1 | 4.5 | 3.5 | 5.5 | 6.5 | 9 |
VOI | 6 | 7.5 | 5 | 5.5 | 4.5 | 6 | 4.5 | 5 | 1 |
GCE | 7.5 | 7.5 | 9 | 1.75 | 4 | 2.75 | 5 | 6 | 1.5 |
BDE | 4 | 3.5 | 3 | 9 | 6.5 | 8 | 6.5 | 3.5 | 1 |
PRI” | VI | GCE | BDE | |
---|---|---|---|---|
FCM | 0.7 | 2.87 | 0.37 | 14.01 |
FGFCM | 0.69 | 2.92 | 0.38 | 14.29 |
HMRF-FCM | 0.72 | 2.59 | 0.33 | 14.22 |
FLICM | 0.71 | 2.73 | 0.35 | 13.47 |
NWFCM | 0.71 | 2.79 | 0.36 | 13.7 |
NDFCM | 0.69 | 2.93 | 0.38 | 12.95 |
FRFCM | 0.76 | 2.67 | 0.37 | - |
SFFCM | 0.73 | 2.18 | 0.25 | 14.13 |
PFCM [48] | 0.72 | 2.97 | 0.42 | - |
KWFLICM [50] | 0.74 | 2.83 | 0.4 | - |
RSFFCA | 0.78 | 2.12 | 0.28 | - |
AWSFCM [51] | 0.75 | 2.74 | 0.38 | - |
MSFCM [49] | 0.74 | 2.85 | 0.4 | - |
ASCQPHGS | 0.8361 | 1.8561 | 0.2077 | 8.3777 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Elaziz, M.; Abo Zaid, E.O.; Al-qaness, M.A.A.; Ibrahim, R.A. Automatic Superpixel-Based Clustering for Color Image Segmentation Using q-Generalized Pareto Distribution under Linear Normalization and Hunger Games Search. Mathematics 2021, 9, 2383. https://doi.org/10.3390/math9192383
Abd Elaziz M, Abo Zaid EO, Al-qaness MAA, Ibrahim RA. Automatic Superpixel-Based Clustering for Color Image Segmentation Using q-Generalized Pareto Distribution under Linear Normalization and Hunger Games Search. Mathematics. 2021; 9(19):2383. https://doi.org/10.3390/math9192383
Chicago/Turabian StyleAbd Elaziz, Mohamed, Esraa Osama Abo Zaid, Mohammed A. A. Al-qaness, and Rehab Ali Ibrahim. 2021. "Automatic Superpixel-Based Clustering for Color Image Segmentation Using q-Generalized Pareto Distribution under Linear Normalization and Hunger Games Search" Mathematics 9, no. 19: 2383. https://doi.org/10.3390/math9192383
APA StyleAbd Elaziz, M., Abo Zaid, E. O., Al-qaness, M. A. A., & Ibrahim, R. A. (2021). Automatic Superpixel-Based Clustering for Color Image Segmentation Using q-Generalized Pareto Distribution under Linear Normalization and Hunger Games Search. Mathematics, 9(19), 2383. https://doi.org/10.3390/math9192383