Enhanced IoV Security Network by Using Blockchain Governance Game
Abstract
:1. Introduction
2. Stochastic Game for BIOV Network Security
2.1. Enhanced IoV Network Structure
2.2. BGG Model for Enhanced BIoV Network
3. Strategies in Blockchain Governance Game
3.1. Memoryless BGG Observation Process for EBIoV Networks
3.2. Marginal Means of EBIoV Decision Making Parameters
4. The EBIoV Optimization Practice
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouse, M. Internet of Vehicles. 2018. Available online: https://whatis.techtarget.com/definition/Internet-of-Vehicles (accessed on 1 May 2019).
- Kim, S.; Shrestha, R. Internet of Vehicles, Vehicular Social Networks, and Cybersecurity. In Automotive Cyber Security; Springer: Singapore, 2020; pp. 149–181. [Google Scholar]
- Dandala, T.T.; Krishnamurthy, V.; Alwan, R. Internet of Vehicles (IoV) for Traffic Management. In Proceedings of the 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 10–11 January 2017; pp. 1–4. [Google Scholar]
- Hamid, U.Z.A.; Zamzuri, H.; Limbu, D.K. Internet of Vehicle (IoV) Applications in Expediting the Implementation of Smart Highway of Autonomous Vehicle: A Survey. In Performability in Internet of Things; Springer: Cham, Germany, 2018; pp. 137–157. [Google Scholar]
- Dorri, A.; Steger, M.; Kanhere, S.S.; Jurdak, R. BlockChain: A Distributed Solution to Automotive Security and Privacy. IEEE Commun. Mag. 2017, 55, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Xiong, Z.; Niyato, D.; Ye, D.; In Kim, D.; Zhao, J. Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory. IEEE Trans. Veh. Technol. 2019, 68, 2906–2920. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Yang, K.; Lei, L.; Zheng, K.; Leung, V.C. Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J. 2018, 6, 1495–1505. [Google Scholar] [CrossRef]
- Steger, M.; Dorri, A.; Kanhere, S.S.; Römer, K.; Jurdak, R.; Karner, M. Secure Wireless Automotive Software Updates using Blockchains: A Proof of Concept. In Advanced Microsystems for Automotive Applications; Springer: Cham, Germany, 2017; pp. 137–149. [Google Scholar]
- Cebe, M.; Erdin, E.; Akkaya, K.; Aksu, H.; Uluagac, S. Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles. IEEE Commun. Mag. 2018, 56, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Blockchain News. Available online: https://www.ccn.com/volkswagen-seeks-patent-for-inter-vehicular-blockchain-communications-system/ (accessed on 1 May 2019).
- Haig, S. Ford to Use Cryptocurrency for Inter-Vehicle Communication System. 2018. Available online: https://news.bitcoin.com/ford-cryptocurrency-inter-vehicle-communication-system/ (accessed on 1 May 2019).
- Conoscenti, M.; Vetrò, A.; De Martin, J.C. Blockchain for the Internet of Things: A Systematic Literature Review. In Proceedings of the 13th IEEE/ACS International Conference of Computer Systems and Applications, AICCSA 2016, Agadir, Morocco, 29 November–2 December 2016. [Google Scholar]
- Restuccia, F. Blockchain for the Internet of Things: Present and Future. Available online: https://arxiv.org/abs/1903.07448 (accessed on 1 May 2019).
- Jesus, E.F.; Chicarino, V.R.L.; de Albuquerque, C.V.N.; Rocha, A.A.D.A. Survey of How to Use Blockchain to Secure Internet of Things and the Stalker Attack. Secur. Commun. Netw. 2018, 2018, 9675050. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Yeun, C.Y.; Damiani, E.; Al-Hammadi, Y.; Lo, N.-W. New Blockchain Adoptation For Automotive Security by Using Systematic Innovation. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo Asia-Pacific, Jeju, Korea, 8–10 May 2019; pp. 1–4. [Google Scholar]
- Baker, J. Edge Computing—The New Frontier of the Web. Available online: https://hackernoon.com/edge-computing-a-beginners-guide-8976b6886481 (accessed on 1 May 2019).
- ERPINNEW. Fog Computing vs Edge Computing. 2017. Available online: https://erpinnews.com/fog-computing-vs-edge-computing (accessed on 1 May 2019).
- Kim, S.-K. Blockchain Governance Game. Comput. Ind. Eng. 2019, 136, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K. Strategic Alliance for Blockchain Governance Game. Probab. Eng. Inf. Sci. 2020, 1–17. [Google Scholar] [CrossRef]
- Hammoud, A.; Sami, H.; Mourad, A.; Otrok, H.; Mizouni, R.; Bentahar, J. AI, Blockchain, and Vehicular Edge Computing for Smart and Secure IoV: Challenges and Directions. IEEE Internet Things Mag. 2020, 3, 68–73. [Google Scholar] [CrossRef]
- Narayanan, A.; Clar, J. Bitcoin’s Academic Pedigree. Mag. Commun. ACM 2017, 60, 36–45. [Google Scholar] [CrossRef]
- Weiss, M.; Corsi, E. Bitfury: Blockchain for Government; HBP Case 9—818-031; Harvard University: Cambridge, MA, USA, 2018; 29p. [Google Scholar]
- Jones, M. Blockchain for Automotive: Spare Parts and Warranty. 2017. Available online: https://www.ibm.com/blogs/internet-of-things/iot-Blockchain-automotive-industry/ (accessed on 1 May 2019).
- Bonomi, F.; Milito, R. Fog Computing and its Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16. [Google Scholar]
- Liu, Z.; Luong, N.C. A Survey on Applications of Game Theory in Blockchain. arXiv 2019, arXiv:1902.10865. [Google Scholar]
- Micali, S.; Rabin, M.; Wang, W.; Niyato, D.; Wang, P.; Liang, Y.C.; In Kim, D. Verifiable Random Functions. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, New York, NY, USA, 17–19 October 1999; pp. 120–130. [Google Scholar]
- Dodis, Y.; Yampolskiy, A. A Verifiable Random Function with Short Proofs and Keys. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3386, pp. 416–431. [Google Scholar]
- Gorbunov, S. Algorand Releases First Open-Source Code: Verifiable Random Function. 2018. Available online: https://medium.com/algorand/ (accessed on 1 May 2019).
- Zhao, W. MIT Professor’s Blockchain Protocol Nets 62 Million in New Funding. 2018. Available online: https://www.coindesk.com/mit-professors-Blockchain-protocol-nets-62-million-in-new-funding (accessed on 1 May 2019).
- Dshalalow, J.H. First Excess Level Process, Advances in Queueing; CRC Press: Boca Raton, FL, USA, 1995; pp. 244–261. [Google Scholar]
- Dshalalow, J.H.; Ke, H.-J. Layers of noncooperative games. Nonlinear Anal. 2009, 71, 283–291. [Google Scholar] [CrossRef]
NotBurst | Burst | |
---|---|---|
Regular | 0 | V |
Safety |
Name | Value | Description |
---|---|---|
M | 16 [Component] | Total number of the nodes in each BIoV network |
V | 50,000 [USD] | Average value of a BIoV enabled connected car |
= [USD] | Cost for reserving nodes to avoid attacks per each car | |
2 [Blocks] | Total number of blocks that changed by an attacker at | |
32 [Nodes] | Maximum number of honest nodes supported from the HQ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-K. Enhanced IoV Security Network by Using Blockchain Governance Game. Mathematics 2021, 9, 109. https://doi.org/10.3390/math9020109
Kim S-K. Enhanced IoV Security Network by Using Blockchain Governance Game. Mathematics. 2021; 9(2):109. https://doi.org/10.3390/math9020109
Chicago/Turabian StyleKim, Song-Kyoo (Amang). 2021. "Enhanced IoV Security Network by Using Blockchain Governance Game" Mathematics 9, no. 2: 109. https://doi.org/10.3390/math9020109
APA StyleKim, S. -K. (2021). Enhanced IoV Security Network by Using Blockchain Governance Game. Mathematics, 9(2), 109. https://doi.org/10.3390/math9020109