Issues on Applying One- and Multi-Step Numerical Methods to Chaotic Oscillators for FPGA Implementation
Abstract
:1. Introduction
2. Chaotic and Hyper-Chaotic Oscillators
3. One-Step and Multi-Step Methods
4. Chaotic Time Series, LE+ and
5. FPGA Implementation Issues
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuchs, A. Nonlinear Dynamics in Complex Systems, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Muñoz-Pacheco, J.M.; Guevara-Flores, D.K.; Félix-Beltrán, O.G.; Tlelo-Cuautle, E.; Barradas-Guevara, J.E.; Volos, C.K. Experimental Verification of Optimized Multiscroll Chaotic Oscillators Based on Irregular Saturated Functions. Complexity 2018, 2018, 3151840. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, S.; Lien, C.H.; Fuadi, W.; Mujiarto; Mamat, M.; Subiyanto. A New 4-D Multi-Stable Hyperchaotic Two-Scroll System with No-Equilibrium and its Hyperchaos Synchronization. J. Phys. Conf. Ser. 2020, 1477, 022018. [Google Scholar] [CrossRef]
- Shang, Y. Deffuant model with general opinion distributions: First impression and critical confidence bound. Complexity 2013, 19, 38–49. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Hegger, R.; Kantz, H.; Schreiber, T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos Interdiscip. J. Nonlinear Sci. 1999, 9, 413–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tlelo-Cuautle, E.; Rangel-Magdaleno, J.; de la Fraga, L.G. Engineering Applications of FPGAs; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–222. [Google Scholar] [CrossRef]
- Fountain, D.M.; Kolias, A.G.; Laing, R.J.; Hutchinson, P.J. The financial outcome of traumatic brain injury: A single centre study. Br. J. Neurosurg. 2017, 31, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Bayani, A.; Akgul, A.; Jafari, M.A.; Pham, V.T.; Wang, X.; Jafari, S. A flexible chaotic system with adjustable amplitude, largest Lyapunov exponent, and local Kaplan—Yorke dimension and its usage in engineering applications. Nonlinear Dyn. 2018, 92, 1791–1800. [Google Scholar] [CrossRef]
- Yakovleva, T.V.; Kutepov, I.E.; Karas, A.Y.; Yakovlev, N.M.; Dobriyan, V.V.; Papkova, I.V.; Zhigalov, M.V.; Saltykova, O.A.; Krysko, A.V.; Yaroshenko, T.Y.; et al. EEG Analysis in Structural Focal Epilepsy Using the Methods of Nonlinear Dynamics (Lyapunov Exponents, Lempel-Ziv Complexity, and Multiscale Entropy). Sci. World J. 2020, 2020, 8407872. [Google Scholar] [CrossRef] [PubMed]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Inertial Neural Networks with Unpredictable Oscillations. Mathematics 2020, 8, 1797. [Google Scholar] [CrossRef]
- Jia, H.; Guo, C. The Application of Accurate Exponential Solution of a Differential Equation in Optimizing Stability Control of One Class of Chaotic System. Mathematics 2020, 8, 1740. [Google Scholar] [CrossRef]
- Lin, C.H.; Hu, G.H.; Yan, J.J. Chaos Suppression in Uncertain Generalized Lorenz–Stenflo Systems via a Single Rippling Controller with Input Nonlinearity. Mathematics 2020, 8, 327. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Gosar, Z. Chaotic Dynamics—Rössler System. Unpublished work. 2011. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Quintas-Valles, A.D.J.; de la Fraga, L.G.; Rangel-Magdaleno, J.D.J. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators. PLoS ONE 2016, 11, e0168300. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, S.; Tlelo-Cuautle, E.; Munoz-Pacheco, J.M.; Sambas, A. A new four-dimensional chaotic system with hidden attractor and its circuit design. In Proceedings of the 2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS), Puerto Vallarta, Mexico, 25–28 February 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 5th ed.; McGraw-Hill/Interamericana: New York, NY, USA, 2006. [Google Scholar]
- Tannehill, J.C.; Anderson, D.A.; Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 1997; pp. 1–740. [Google Scholar]
- Sano, M.; Sawada, Y. Measurement of the Lyapunov Spectrum from a Chaotic Time Series. Phys. Rev. Lett. 1985, 55, 1082–1085. [Google Scholar] [CrossRef] [PubMed]
- Tlelo-Cuautle, E.; Pano-Azucena, A.D.; Guillén-Fernández, O.; Silva-Juárez, A. Analog/Digital Implementation of Fractional Order Chaotic Circuits and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
Method | Iterative Equation |
---|---|
Forward Euler (FE) | |
Backward Euler (BE) | |
Runge–Kutta 4 (RK4) |
Method | Iterative Equation |
---|---|
Adams– Bashforth 6 (AB6) | |
Adams– Moulton 4 (AM4) | |
Gear 4 (G4) |
Variable | LE+ | Variable | LE+ |
---|---|---|---|
x_HO4_RK4 | 0.48209 | x_HO4_G4 | 0.05828 |
y_HO4_RK4 | 0.46388 | y_HO4_BE | 0.05650 |
w_HO4_FE | 0.44930 | x_HO5_BE | 0.05628 |
z_HO4_FE | 0.44903 | z_HO4_BE | 0.05575 |
x_HO4_FE | 0.43356 | y_HO5_FE | 0.05489 |
w_HO4_RK4 | 0.43249 | x_HO5_AM4 | 0.05380 |
z_HO4_AB6 | 0.42495 | z_HO4_G4 | 0.05366 |
z_HO4_AM4 | 0.41541 | w_HO5_BE | 0.05221 |
w_HO4_AB6 | 0.41065 | x_CO1_G4 | 0.05066 |
w_HO4_AM4 | 0.40906 | x_CO1_AM4 | 0.04997 |
x_HO4_AM4 | 0.40645 | w_HO5_G4 | 0.04912 |
x_HO4_AB6 | 0.40141 | y_CO2_AB6 | 0.04814 |
z_HO4_RK4 | 0.38334 | x_HO5_G4 | 0.04812 |
y_HO4_FE | 0.37315 | w_HO5_AM4 | 0.04610 |
y_HO4_AB6 | 0.36170 | w_HO4_G4 | 0.04488 |
y_HO4_AM4 | 0.35865 | y_HO5_AB6 | 0.04372 |
x_CO2_FE | 0.29526 | z_CO3_AM4 | 0.04275 |
z_HO5_FE | 0.22398 | y_HO5_AM4 | 0.04017 |
y_CO2_FE | 0.20778 | y_HO5_G4 | 0.03834 |
z_CO2_AM4 | 0.20292 | z_CO3_G4 | 0.03809 |
z_CO2_G4 | 0.20292 | y_HO4_G4 | 0.03730 |
z_HO5_RK4 | 0.15873 | x_CO1_BE | 0.03651 |
z_CO2_BE | 0.15520 | y_HO5_BE | 0.03585 |
w_HO5_RK4 | 0.13860 | y_CO1_RK4 | 0.03529 |
z_HO5_AB6 | 0.12956 | z_CO3_BE | 0.03187 |
z_CO3_RK4 | 0.11378 | y_CO1_BE | 0.02697 |
w_HO5_AB6 | 0.10937 | y_CO1_FE | 0.02547 |
y_CO2_BE | 0.10362 | y_CO3_FE | 0.02457 |
w_HO4_BE | 0.09907 | x_CO2_G4 | 0.02429 |
x_HO5_RK4 | 0.09784 | x_CO3_AB6 | 0.02294 |
z_HO5_G4 | 0.09718 | y_CO3_RK4 | 0.02166 |
w_HO5_FE | 0.09207 | z_CO1_BE | 0.02024 |
y_CO2_G4 | 0.09088 | x_CO2_RK4 | 0.01952 |
y_CO1_AM4 | 0.08520 | y_CO1_AB6 | 0.01944 |
z_HO5_AM4 | 0.08389 | y_CO3_AM4 | 0.01918 |
z_CO2_FE | 0.08388 | x_CO2_AM4 | 0.01659 |
y_CO2_RK4 | 0.08253 | x_CO1_AB6 | 0.01596 |
x_HO4_BE | 0.08253 | z_CO1_RK4 | 0.01593 |
x_HO5_AB6 | 0.08008 | y_CO3_G4 | 0.01488 |
z_CO3_FE | 0.08000 | x_CO3_RK4 | 0.01414 |
z_CO1_AM4 | 0.07899 | x_CO3_FE | 0.01380 |
x_CO2_AB6 | 0.07732 | x_CO2_BE | 0.01352 |
y_CO1_G4 | 0.07696 | z_CO1_AB6 | 0.01333 |
x_CO1_FE | 0.07658 | z_CO1_FE | 0.01107 |
z_CO2_AB6 | 0.07475 | z_CO3_AB6 | 0.01041 |
z_HO5_BE | 0.07097 | x_CO3_G4 | 0.01024 |
x_HO5_FE | 0.06928 | y_CO3_AB6 | 0.00988 |
z_CO2_RK4 | 0.06513 | x_CO3_AM4 | 0.00959 |
x_CO1_RK4 | 0.06501 | z_CO1_G4 | 0.00826 |
y_CO2_AM4 | 0.06107 | x_CO3_BE | 0.00788 |
y_HO5_RK4 | 0.06064 | y_CO3_BE | 0.00642 |
Variable | D-KY | Variable | D-KY |
---|---|---|---|
x_HO5_BE | 4.00000 | z_CO2_RK4 | 3.00000 |
z_HO5_AM4 | 4.00000 | x_CO1_AB6 | 2.98513 |
z_HO5_AB6 | 4.00000 | x_CO1_BE | 2.90439 |
z_HO5_G4 | 4.00000 | y_HO5_BE | 2.90363 |
w_HO5_BE | 4.00000 | y_CO2_BE | 2.89287 |
z_HO4_G4 | 3.94577 | y_HO5_AM4 | 2.87440 |
z_HO5_BE | 3.92788 | y_CO2_AB6 | 2.87170 |
w_HO5_G4 | 3.92303 | y_CO1_G4 | 2.84422 |
w_HO5_AB6 | 3.92021 | y_HO5_G4 | 2.81868 |
z_HO5_RK4 | 3.91847 | z_CO2_FE | 2.81799 |
w_HO5_AM4 | 3.90834 | x_CO2_FE | 2.73846 |
z_HO5_FE | 3.90638 | y_HO4_G4 | 2.73341 |
w_HO5_FE | 3.88397 | z_CO3_RK4 | 2.71019 |
x_HO5_AB6 | 3.86937 | z_CO2_AM4 | 2.68730 |
x_HO5_RK4 | 3.86684 | z_CO2_G4 | 2.68730 |
w_HO5_RK4 | 3.84980 | y_CO2_G4 | 2.65563 |
x_HO5_AM4 | 3.80773 | z_CO2_AB6 | 2.50008 |
w_HO4_RK4 | 3.71818 | z_CO3_FE | 2.37750 |
y_HO4_AM4 | 3.70668 | x_CO3_AB6 | 2.37036 |
x_HO4_FE | 3.68494 | x_CO2_AB6 | 2.35488 |
x_HO4_AM4 | 3.68262 | y_CO2_FE | 2.28816 |
y_HO4_AB6 | 3.68177 | y_CO2_AM4 | 2.26332 |
w_HO4_AB6 | 3.68161 | z_CO3_AM4 | 2.24167 |
x_HO4_AB6 | 3.68044 | x_CO3_RK4 | 2.20126 |
w_HO4_FE | 3.67562 | z_CO1_BE | 2.18781 |
z_HO4_RK4 | 3.66694 | z_CO1_RK4 | 2.17805 |
w_HO4_AM4 | 3.66422 | x_CO3_FE | 2.17802 |
z_HO4_AM4 | 3.65360 | y_CO3_AM4 | 2.16888 |
x_HO4_G4 | 3.64872 | z_CO3_BE | 2.16674 |
y_HO4_FE | 3.63942 | z_CO3_G4 | 2.15179 |
z_HO4_AB6 | 3.62949 | x_CO3_G4 | 2.14228 |
z_HO4_FE | 3.62776 | y_CO3_FE | 2.13910 |
y_HO4_RK4 | 3.59111 | x_CO3_AM4 | 2.13357 |
x_HO4_RK4 | 3.58378 | y_CO1_RK4 | 2.12505 |
x_HO5_G4 | 3.57333 | y_CO3_G4 | 2.11978 |
x_HO4_BE | 3.54548 | z_CO1_AB6 | 2.11110 |
y_HO5_RK4 | 3.53267 | x_CO3_BE | 2.09697 |
w_HO4_BE | 3.44177 | y_CO1_AM4 | 2.09374 |
y_HO5_FE | 3.37649 | z_CO3_AB6 | 2.08648 |
z_HO4_BE | 3.30898 | x_CO2_RK4 | 2.08539 |
y_HO5_AB6 | 3.30389 | y_CO3_RK4 | 2.08183 |
x_HO5_FE | 3.17620 | z_CO1_AM4 | 2.06457 |
y_HO4_BE | 3.16271 | x_CO1_AM4 | 2.06136 |
w_HO4_G4 | 3.15787 | z_CO1_FE | 2.05527 |
x_CO1_FE | 3.00000 | y_CO1_FE | 2.04314 |
x_CO1_RK4 | 3.00000 | x_CO2_G4 | 2.03557 |
x_CO1_G4 | 3.00000 | y_CO3_AB6 | 2.03262 |
y_CO1_BE | 3.00000 | z_CO1_G4 | 2.02645 |
y_CO1_AB6 | 3.00000 | x_CO2_AM4 | 2.00114 |
y_CO2_RK4 | 3.00000 | y_CO3_BE | 2.00079 |
z_CO2_BE | 3.00000 | x_CO2_BE | 1.98573 |
Resources | CO1 | CO2 | CO3 | HO4 | HO5 | Available |
---|---|---|---|---|---|---|
Logic elements | 1295 | 1083 | 2567 | 2554 | 1707 | 149,760 |
Registers | 654 | 565 | 588 | 1591 | 1045 | 149,760 |
9*9 bit multipliers | 16 | 8 | 8 | 135 | 92 | 720 |
Max freq (MHz) | 90.88 | 102.75 | 58.55 | 79.77 | 82.7 | 50 |
Clock cycles by iteration | 5 | 7 | 9 | 12 | 9 | - |
Latency (ns) | 100 | 140 | 180 | 240 | 180 | - |
Resources | FE | BE | RK4 | AB6 | AM4 | G4 | Available |
---|---|---|---|---|---|---|---|
Logic elements | 1295 | 1988 | 4708 | 8512 | 7684 | 7220 | 149,760 |
Registers | 654 | 1160 | 2662 | 4232 | 3856 | 3484 | 149,760 |
Multipliers | 16 | 32 | 208 | 325 | 290 | 274 | 720 |
Freq (MHz) | 90.88 | 92.59 | 84.77 | 83.53 | 84.18 | 82.73 | 50 |
Clks/iteration | 5 | 11 | 32 | 190 | 130 | 100 | - |
Latency (ns) | 100 | 220 | 640 | 3800 | 2600 | 2000 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén-Fernández, O.; Moreno-López, M.F.; Tlelo-Cuautle, E. Issues on Applying One- and Multi-Step Numerical Methods to Chaotic Oscillators for FPGA Implementation. Mathematics 2021, 9, 151. https://doi.org/10.3390/math9020151
Guillén-Fernández O, Moreno-López MF, Tlelo-Cuautle E. Issues on Applying One- and Multi-Step Numerical Methods to Chaotic Oscillators for FPGA Implementation. Mathematics. 2021; 9(2):151. https://doi.org/10.3390/math9020151
Chicago/Turabian StyleGuillén-Fernández, Omar, María Fernanda Moreno-López, and Esteban Tlelo-Cuautle. 2021. "Issues on Applying One- and Multi-Step Numerical Methods to Chaotic Oscillators for FPGA Implementation" Mathematics 9, no. 2: 151. https://doi.org/10.3390/math9020151
APA StyleGuillén-Fernández, O., Moreno-López, M. F., & Tlelo-Cuautle, E. (2021). Issues on Applying One- and Multi-Step Numerical Methods to Chaotic Oscillators for FPGA Implementation. Mathematics, 9(2), 151. https://doi.org/10.3390/math9020151