Some Applications of the Wright Function in Continuum Physics: A Survey
Abstract
:1. Introduction
2. Mathematical Preliminaries
2.1. Integrals and Derivatives of Fractional Order
2.2. Mittag–Leffler Functions
2.3. Wright Function and Mainardi Function
2.4. The Integral Transform Relations between the Mittag–Leffler Function and Wright Function
3. Applications of the Wright Function
3.1. Fractional Heat Conduction in Nonhomogeneous Media under Perfect Thermal Contact
3.2. Fractional Heat Conduction in Nonhomogeneous Media under Nonperfect Thermal Contact
3.3. Fractional Heat Conduction under Time-Harmonic Impact
3.4. Fractional Nonlocal Elasticity
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- West, B.J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators; Springer: New York, NY, USA, 2003. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Redding, CT, USA, 2006. [Google Scholar]
- Povstenko, Y. Fractional heat conduction equation and associated thermal stresses. J. Therm. Stress. 2005, 28, 83–102. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin, Germany, 2010. [Google Scholar]
- Povstenko, Y. Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 2011, 34, 97–114. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany, 2013. [Google Scholar]
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists, 2nd ed.; World Scientific: Singapore, 2014. [Google Scholar]
- Povstenko, Y. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015. [Google Scholar]
- Datsko, B.; Gafiychuk, V.; Podlubny, I. Solitary travelling auto-waves in fractional reaction–diffusion systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 23, 378–387. [Google Scholar] [CrossRef] [Green Version]
- West, B.J. Fractional Calculus View of Complexity: Tomorrow’s Science; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Skiadas, C.H. (Ed.) Fractional Dynamics, Anomalous Transport and Plasma Science; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 4: Application in Physics. Part A; Walter de Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Kumar, D.; Singh, J. (Eds.) Fractional Calculus in Medical and Health Science; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Su, N. Fractional Calculus for Hydrology, Soil Science and Geomechanics: An Introduction to Applications; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Mittag–Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris Ser. II 1903, 137, 554–558. [Google Scholar]
- Mittag–Leffler, G.M. Sopra la funzione Eα(x). Rend. Accad. Lincei Ser. V 1904, 13, 3–5. [Google Scholar]
- Humbert, P. Quelques résultats relatifs a‘ la fonction de Mittag–Leffler. C. R. Acad. Sci. Paris 1953, 236, 1467–1468. [Google Scholar]
- Humbert, P.; Agarwal, R.P. Sur la fonction de Mittag–Leffler et quelques-unes de ses généralisations. Bull. Sci. Math. 1953, 77, 180–185. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1955; Volume 3. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag–Leffler function and its derivatives. Fract. Calc. Appl. Anal. 2002, 5, 491–518. [Google Scholar]
- Podlubny, I. Mittag–Leffler Function; Calculates the Mittag–Leffler Function with Desired Accuracy, MATLAB Central File Exchange, File ID 8738. Available online: www.mathworks.com/matlabcentral/fileexchange/8738 (accessed on 16 November 2020).
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. Ser. II 1935, 38, 257–270. [Google Scholar] [CrossRef]
- Luchko, Y. The Wright function and its applications. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany, 2019; pp. 241–268. [Google Scholar]
- Luchko, Y. Algorithms for evaluation of the Wright function for the real arguments’ values. Fract. Calc. Appl. Anal. 2008, 11, 57–75. [Google Scholar]
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Mainardi, F.; Tomirotti, M. On a special function arising in the time fractional diffusion-wave equation. In Transform Methods & Special Functions, Sofia’ 94; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology Publishing: Singapore, 1995; pp. 171–183. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Mainardi, F.; Tomirotti, M. Seismic pulse propagation with constant Q and stable probability distributions. Ann. Geofis. 1997, 40, 1311–1328. [Google Scholar]
- Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Birkhäuser: New York, NY, USA, 2015. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 2000, 118, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Pagnini, G. The Wright functions as solutions of the time-fractional diffusion equation. Appl. Math. Comput. 2003, 141, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Stanković, B. On the function of E. M. Wright. Publ. Inst. Math. 1970, 10, 113–124. [Google Scholar]
- Gajić, L.; Stanković, B. Some properties of Wright’s function. Publ. Inst. Math. 1976, 20, 91–98. [Google Scholar]
- Povstenko, Y. Generalized theory of diffusive stresses associated with the time-fractional diffusion equation and nonlocal constitutive equations for the stress tensor. Comput. Math. Appl. 2019, 78, 1819–1825. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphics and Mathematical Tables; Dover: New York, NY, USA, 1972. [Google Scholar]
- Povstenko, Y. Fractional heat conduction in infinite one-dimensional composite medium. J. Therm. Stress. 2013, 36, 351–363. [Google Scholar] [CrossRef]
- Povstenko, Y. Fundamental solutions to time-fractional heat conduction equations in two joint half-lines. Cent. Eur. J. Phys. 2013, 11, 1284–1294. [Google Scholar] [CrossRef] [Green Version]
- Povstenko, Y. Fractional heat conduction in a semi-infinite composite body. Comm. Appl. Industr. Math. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional heat conduction in an infinite medium with a spherical inclusion. Entropy 2013, 15, 4122–4133. [Google Scholar] [CrossRef] [Green Version]
- Luikov, A.V. Analytical Heat Diffusion Theory; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Özişik, M.N. Heat Conduction; John Wiley: New York, NY, USA, 1980. [Google Scholar]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef] [Green Version]
- Marguerre, K. Thermo-elastische Platten–Gleichungen. Z. Angew. Math. Mech. 1935, 15, 369–372. [Google Scholar] [CrossRef]
- Marguerre, K. Temperaturverlauf und Temperaturspannumgen in platten- und schalenformigen Körpern. Ing. Arch. 1937, 8, 216–228. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional thermoelasticity of thin shells. In Shell Structures; Pietraszkiewicz, W., Górski, J., Eds.; CRC Press: Boca Raton, FL, USA, 2014; Volume 3, pp. 141–144. [Google Scholar]
- Povstenko, Y. Generalized boundary conditions for the time-fractional advection diffusion equation. Entropy 2015, 17, 4028–4039. [Google Scholar] [CrossRef] [Green Version]
- Povstenko, Y.; Kyrylych, T. Fractional heat conduction in solids connected by thin intermediate layer: Nonperfect thermal contact. Contin. Mech. Thermodyn. 2019, 31, 1719–1731. [Google Scholar] [CrossRef] [Green Version]
- Ångström, A.J. Neue Methode, das Wärmeleitungsvermögen der Körper zu bestimmen. Ann. Phys. Chem. 1861, 114, 513–530. [Google Scholar] [CrossRef] [Green Version]
- Mandelis, A. Diffusion-Wave Fields: Mathematical Methods and Green Functions; Springer: New York, NY, USA, 2001. [Google Scholar]
- Povstenko, Y. Fractional heat conduction in a space with a source varying harmonically in time and associated thermal stresses. J. Therm. Stress. 2016, 39, 1442–1450. [Google Scholar] [CrossRef]
- Eringen, A.C. Vistas of nonlocal continuum physics. Int. J. Engng. Sci. 1992, 30, 1551–1565. [Google Scholar] [CrossRef]
- Pidstryhach, Y.S. Differential equations of the diffusion theory of deformation of a solid. Dopovidi Ukr. Acad. Sci. 1963, 3, 336–340. (In Ukrainian) [Google Scholar]
- Podstrigach, Y.S. Diffusion theory of the anelasticity of metals. J. Appl. Mech. Tech. Phys. 1965, 6, 56–60. [Google Scholar] [CrossRef]
- Podstrigach, Y.S.; Povstenko, Y. Introduction to Mechanics of Surface Phenomena in Deformable Solids; Naukova Dumka: Kiev, Ukraine, 1985. (In Russian) [Google Scholar]
- Povstenko, Y. From the chemical potential tensor and concentration tensor to nonlocal continuum theories. J. Math. Sci. 2020, 249, 389–403. [Google Scholar] [CrossRef]
- Podstrigach, Y.S. On a nonlocal theory of solid body deformation. Internat. Appl. Mech. 1967, 3, 44–46. [Google Scholar] [CrossRef]
- Eringen, A.C. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Engng. Sci. 1972, 10, 425–435. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Kunin, I.A. Elastic Media with Microstructure I: One-Dimensional Models; Springer: Berlin, Germany, 1982. [Google Scholar]
- Kunin, I.A. Elastic Media with Microstructure II: Three-Dimensional Models; Springer: Berlin, Germany, 1983. [Google Scholar]
- Eringen, A.C. On differential eqations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional nonlocal elasticity and solutions for straight screw and edge dislocations. Fiz. Mesomekhanika 2020, 23, 35–44. [Google Scholar]
- Al-Bassam, M.A.; Luchko, Y.F. On generalized fractional calculus and its application to the solution of integro-diferential equations. J. Fract. Calc. 1995, 7, 69–88. [Google Scholar]
- Kiryakova, V. The multi-index Mittag–Leffler functions as an important class of special functions of fractional calculus. Comp. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 2011, 374, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Y.; Yamamoto, M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 2015, 257, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Saigo, M.; Trujillo, J.J. On the generalized Wright function. Fract. Calc. Appl. Anal. 2002, 5, 437–460. [Google Scholar]
- Kilbas, A.A. Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 2005, 8, 113–126. [Google Scholar]
- Khan, N.U.; Usman, T.; Aman, M. Some properties concerning the analysis of generalized Wright function. J. Comput. Appl. Math. 2020, 376, 112840. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Povstenko, Y. Some Applications of the Wright Function in Continuum Physics: A Survey. Mathematics 2021, 9, 198. https://doi.org/10.3390/math9020198
Povstenko Y. Some Applications of the Wright Function in Continuum Physics: A Survey. Mathematics. 2021; 9(2):198. https://doi.org/10.3390/math9020198
Chicago/Turabian StylePovstenko, Yuriy. 2021. "Some Applications of the Wright Function in Continuum Physics: A Survey" Mathematics 9, no. 2: 198. https://doi.org/10.3390/math9020198
APA StylePovstenko, Y. (2021). Some Applications of the Wright Function in Continuum Physics: A Survey. Mathematics, 9(2), 198. https://doi.org/10.3390/math9020198