Mastering the Body and Tail Shape of a Distribution
Abstract
:1. Introduction
- A finite number of well interpretable parameters: These include parameters that specifically control location, scale, skewness and kurtosis.
- Favorable estimation properties: It is important that the parameters can be estimated correctly to ensure correct predictions and inferences from the model. Inferentially speaking, the ideal would be to have a model to use in tests of normality.
- Simple tractability: Closed-form expressions are still desirable, despite modern computational power. Simple formulae describing characteristics of distributions aid in exposition and additionally improve computational implementation and speed.
- Finite moments: Most real-world measurements require this property.
2. The Generalized Normal Distribution
3. Modifying Distributions through Their Derivative Kernel Functions
- Calculate the derivative kernel function for the GN.
- Inspect the functional components of the kernel function to understand which properties can be changed or generalized.
- Take the indefinite integral of the derivative kernel function.
4. The Body-Tail Generalized Normal Distribution
4.1. Density Function
4.2. Characteristics
5. BTGN Estimation Procedures
5.1. ML Estimation
5.2. MPS Estimation
5.3. Fitting Mixtures of BTGN
5.4. Fitting SAR Models
6. Application
6.1. Financial Risk Management and Portfolio Selection
Stock Returns Data
6.2. Returns Distributions
6.3. Results
7. Wind Energy
7.1. Wind Speed and Power Distributions
7.2. Wind Speed Data
7.3. Short-Run Wind Speed Model
7.3.1. White Noise Distributions
7.3.2. Results
7.4. Long-Run Wind Speed Model
7.4.1. Two-Component Mixture Distributions
7.4.2. Results
7.5. Application Conclusion
8. Conclusions
- a closed-form density function unlike the ASSG distribution (excluding the Cauchy distribution);
- a single parameter governing body and tail shape unlike the majority of distributions nested in the symmetric GHYP distribution;
- finite moments regardless of shape parameter selection differently from the t and ASSG distributions;
- light and heavy-tailed kurtosis is achievable, unlike the TIN, GN, and t distributions;
- possess simple equations and tractability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Lemmas for Derivation of Statistical Quantities
Appendix B. Derivatives for Estimation
Appendix C. Modified Expectation Maximization Algorithm
Algorithm A1 Modified EM algorithm for k component FMBTGN |
|
References
- De Vries, H. Ueber halbe Galton-Curven als Zeichen discontinuirlicher Variation; Gebrüder Borntraeger: Berlin, Germany, 1894. [Google Scholar]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite Mixture Models. Annu. Rev. Stat. Appl. 2000, 6, 355–378. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.; Kent, J.; Sørensen, M. Normal Variance-Mean Mixtures and z Distributions. Int. Stat. Rev. Rev. Int. Stat. 1982, 50, 145–159. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2007. [Google Scholar]
- Box, G.P.; Cox, D. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 1–43. [Google Scholar] [CrossRef]
- Jones, M. Families of Distributions Arising from Distributions of Order Statistics. Test 2004, 13, 1–43. [Google Scholar] [CrossRef]
- Ferreira, J.; Steel, M. A constructive Representation of Univariate Skewed Distributions. J. Am. Stat. Assoc. 2006, 101, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. Memoir on skew variation in homogenous material. Philos. Trans. R. Soc. A 1895, 186, 343–414. [Google Scholar]
- Hansen, B.E. Autoregressive Conditional Density Estimation. Int. Econ. Rev. 1994, 35, 705–730. [Google Scholar] [CrossRef]
- Naveau, P.; GeGenton, M.; Shen, X. A skewed Kalman filter. J. Multivar. Anal. 2005, 94, 382–400. [Google Scholar] [CrossRef] [Green Version]
- Allard, D.; Naveau, P. A New Spatial Skew-Normal Random Field Model. Commun. Stat.-Theory Methods 2007, 36, 1821–1834. [Google Scholar] [CrossRef]
- Azzalini, A.; Genton, M. Robust Likelihood Methods Based on the Skew-t and Related Distributions. Int. Stat. Rev. 2008, 76, 106–129. [Google Scholar] [CrossRef]
- Arellano-Valle, R.; Bolfarine, H.; Lachos, V. Skew-normal linear mixed models. J. Data Sci. 2005, 3, 415–438. [Google Scholar] [CrossRef]
- Pereira, M.A.A.; Russo, C.M. Nonlinear mixed-effects models with scale mixture of skew-normal distributions. J. Appl. Stat. 2019, 46, 1602–1620. [Google Scholar] [CrossRef]
- Rubio, F.J.; Steel, M. Inference in Two-piece Location-Scale Models with Jeffreys priors. Bayesian Anal. 2014, 9, 1–22. [Google Scholar] [CrossRef]
- Maleki, M.; Wraith, D.; AArellano-Valle, R.B. A flexible class of parametric distributions for Bayesian linear mixed models. Test 2018, 28, 1–22. [Google Scholar] [CrossRef]
- Ley, C. Flexible modeling in statistics: Past, present and future. J. Soc. Fr. Stat. 2015, 156, 76–96. [Google Scholar]
- Jones, M. On Families of Distributions with Shape Parameters. Int. Stat. Rev. 2015, 83, 175–192. [Google Scholar] [CrossRef]
- McLeish, D.L. A Robust Alternative to the Normal Distribution. Can. J. Stat. Rev. Can. Stat. 1982, 10, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Johnson, N.L. Systems of Frequency Curves Generated by Methods of Translation. Biometrika 1949, 36, 149–176. [Google Scholar] [CrossRef] [PubMed]
- Tukey, J.W. Modern techniques in data analysis. In Proceedings of the NSF-Sponsored Regional Research Conference; Southeastern Massachusetts University: North Dartmouth, MA, USA, 1977; Volume 7. [Google Scholar]
- Rieck, J.R.; Nedelman, J.R. A Log-Linear Model for the BirnbaumSaunders Distribution. Technometrics 1991, 33, 51–60. [Google Scholar]
- Jones, M.; Pewsey, A. Sinh-arcsinh distributions. Biometrika 2009, 96, 761–780. [Google Scholar] [CrossRef] [Green Version]
- Subbotin, M.T. On the Law of Frequency of Error. Mathematicheskii Sbornik 1923, 31, 296–301. [Google Scholar]
- Box, G.E.; Tiao, G. A further look at robustness via Bayes’s theorem. Biometrika 1962, 49, 419–432. [Google Scholar] [CrossRef]
- Box, G.E.; Tiao, G.C. Bayesian Inference in Statistical Analysis; Addison Wesley: Boston, MA, USA, 1973; Volume 1. [Google Scholar]
- Arashi, M.; Nadarajah, S. Generalized elliptical distributions. Commun. Stat.-Theory Methods 2017, 46, 6412–6432. [Google Scholar] [CrossRef]
- Nadarajah, S.; Teimouri, M. On the Characteristic Function for Asymmetric Exponential Power Distributions. Econom. Rev. 2012, 31, 475–481. [Google Scholar] [CrossRef]
- Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons: Hoboken, NJ, USA, 1994; Volume 2. [Google Scholar]
- Barndorff-Nielsen, O. Hyperbolic Distributions and Distributions on Hyperbolae. Scand. J. Stat. 1978, 5, 151–157. [Google Scholar]
- Gradshteyn, I.; Ryhzhik, I. Table of Integrals, Series and Products; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Scott, D.J.; Würtz, D.; Dong, C.; Tran, T.T. Moments of the generalized hyperbolic distribution. Comput. Stat. 2011, 26, 459–476. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Stephens, M. A goodness-of-fit test using Moran’s statistic with estimated parameters. Biometrika 1989, 76, 385–392. [Google Scholar] [CrossRef]
- Cheng, R.; Amin, N. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Ranneby, B. The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. 1977, 39, 1–22. [Google Scholar]
- Blume, M. Expectation Maximization: A Gentle Introduction; Technical University of Munich Institute for Computer Science: Munich, Germany, 2002. [Google Scholar]
- McLachlan, G.J.; Krishnan, T. The EM Algorithm and Extensions; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 382. [Google Scholar]
- Biernacki, C.; Celeux, G.; Govaert, G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal. 2003, 41, 561–575. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Johansson, F. mpmath: A Python Library for Arbitrary-Precision Floating-Point Arithmetic (Version 1.1.0). 2018. Available online: http://mpmath.org/ (accessed on 20 August 2021).
- Fama, E.F. Portfolio Analysis in a Stable Paretian Market. Manag. Sci. 1965, 11, 404–419. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Variation of Certain Speculative Prices. In Fractals and Scaling in Finance; Springer: Berlin/Heidelberg, Germany, 1997; pp. 371–418. [Google Scholar]
- Bingham, N.H.; Kiesel, R. Semi-parametric modeling in finance: Theoretical foundations. Quant. Financ. 2002, 2, 241. [Google Scholar] [CrossRef]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools Revised Edition. In Economics Books; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Kring, S.; Rachev, S.T.; Höchstötter, M.; Fabozzi, F.J. Estimation of α-stable sub-Gaussian Distributions for Asset Returns. In Risk Assessment; Springer: Berlin/Heidelberg, Germany, 2009; pp. 111–152. [Google Scholar]
- Behr, A.; Pötter, U. Alternatives to the normal model of stock returns: Gaussian mixture, generalised logF and generalised hyperbolic models. Ann. Financ. 2009, 5, 49–68. [Google Scholar] [CrossRef]
- Rachev, S.T.; Hoechstoetter, M.; Fabozzi, F.J.; Focardi, S.M. Probability and Statistics for Finance; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 176. [Google Scholar]
- Prause, K. The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures. Ph.D. Thesis, Albert-Ludwigs-Universitat Freiburg, Freiburg im Breisgau, Germany, 1999. [Google Scholar]
- Weibel, M.; Luethi, D.; Breymann, W. ghyp: Generalized Hyperbolic Distribution and Its Special Cases (Version 1.6.1). 2020. Available online: https://cran.r-project.org/web/packages/ghyp (accessed on 20 August 2021).
- Petroleum, B. BP Statistical Review of World Energy 2021. British Petroleum. 2021. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 20 August 2021).
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 2. [Google Scholar]
- Akpinar, S.; Akpinar, E.K. Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 2009, 50, 877–884. [Google Scholar] [CrossRef]
- Punzo, A.; Bagnato, L. The multivariate tail-inflated normal distribution and its application in finance. J. Stat. Comput. Simul. 2021, 91, 1–36. [Google Scholar] [CrossRef]
Stock | Min | Max | Median | Mean | Std | Pearson Skewness | Peasrson Kurtosis | Jarque–Bera Test |
---|---|---|---|---|---|---|---|---|
CASI | −0.291 | 0.390 | 0.000 | 0.001 | 0.051 | 0.997 | 12.085 | 4538.31 (<0.001) |
ISHG | −0.018 | 0.018 | 0.000 | 0.000 | 0.004 | 0.041 | 4.496 | 117.17 (<0.001) |
PTNR | −0.162 | 0.142 | 0.000 | 0.000 | 0.029 | 0.232 | 5.549 | 349.62 (<0.001) |
CASI | GHYP | −3526.1490 | −3506.4427 | 389.5723 | −0.0019 | 0.0507 | −0.7319 | 0.2987 |
HYP | −3513.0744 | −3498.2946 | 391.0317 | −0.0000 | 0.0463 | 1.0000 | 0.0000 | |
NIG | −3527.8463 | −3513.0666 | 389.6385 | −0.0018 | 0.0503 | −0.5000 | 0.3328 | |
VG | −3537.4194 | −3522.6397 | 393.9111 | 0.0000 | 0.0524 | 0.7514 | 0.0000 | |
t | −3525.0400 | −3510.2603 | 388.9277 | −0.0019 | 0.0628 | 2.4891 | ||
GN | −3537.7965 | −3523.0168 | 389.8658 | −0.0000 | 0.0188 | 0.7380 | 0.7380 | |
BTGN | −3733.5650 | −3713.8587 | 417.4258 | 0.0000 | 0.1197 | 0.0476 | 1.8205 | |
ISHG | GHYP | −8352.2902 | −8332.6115 | 980.9677 | 0.0000 | 0.0040 | 1.7862 | 0.0035 |
HYP | −8352.0322 | −8337.2731 | 979.6594 | 0.0000 | 0.0040 | 1.0000 | 1.1338 | |
NIG | −8350.0107 | −8335.2516 | 978.4966 | 0.0000 | 0.0040 | −0.5000 | 1.6525 | |
VG | −8354.2905 | −8339.5315 | 980.9588 | 0.0000 | 0.0040 | 1.7864 | 0.0000 | |
t | −8346.3409 | −8331.5818 | 977.3430 | 0.0000 | 0.0040 | 6.1793 | ||
GN | −8357.9349 | −8343.1759 | 982.0069 | 0.0000 | 0.0040 | 1.2773 | 1.2773 | |
BTGN | −8514.4274 | −8494.7486 | 1043.9415 | 0.0000 | 0.0107 | 0.0182 | 2.6180 | |
PTNR | GHYP | −4516.8499 | −4497.1791 | 440.9224 | −0.0002 | 0.0273 | 1.1520 | 0.0004 |
HYP | −4518.5882 | −4503.8350 | 442.7398 | −0.0000 | 0.0277 | 1.0000 | 0.0000 | |
NIG | −4509.7401 | −4494.9870 | 437.6985 | −0.0009 | 0.0272 | −0.5000 | 0.9663 | |
VG | −4518.8500 | −4504.0969 | 440.9128 | −0.0002 | 0.0273 | 1.1509 | 0.0000 | |
t | −4504.1213 | −4489.3682 | 436.0415 | −0.0009 | 0.0277 | 4.4203 | ||
GN | −4520.5684 | −4505.8153 | 440.6156 | −0.0000 | 0.0221 | 1.0964 | 1.0964 | |
BTGN | −4576.0918 | −4556.4209 | 448.4033 | −0.0000 | 0.0460 | 0.0001 | 1.4249 |
Min | Max | Median | Mean | Std | Pearson Skewness | Pearson Kurtosis |
---|---|---|---|---|---|---|
0.020 | 2.000 | 11.960 | 2.434 | 1.804 | 1.007 | 3.707 |
N | 10,167.3 | 10,202.7 | −4306.268 | 0.728 | 0.485 | 0.248 | −0.400 | 0.103 | 1.317 | 2 | 2 |
GN | 9518.66 | 9560.01 | −4267.310 | 0.730 | 0.459 | 0.254 | −0.501 | −0.279 | 1.278 | 1.475 | 1.475 |
BTGN | 9509.72 | 9556.98 | −4218.535 | 0.625 | 0.491 | 0.263 | −0.439 | −0.197 | 1.287 | 6.890 | 0.466 |
i | |||||||||
---|---|---|---|---|---|---|---|---|---|
FMLN | 3.66815 | 3.66836 | −310,551.382 | 1 | 0.216 | −0.668 | 1.116 | 2 | 2.0 |
2 | 0.784 | 0.862 | 0.636 | 2 | 2.0 | ||||
FMLTIN | 3.78236 | 3.78264 | −319,375.068 | 1 | 0.840 | 0.364 | 1.064 | 0.874 | · |
2 | 0.160 | 1.344 | 0.271 | 0.996 | · | ||||
FMLBTGN | 3.63631 | 3.63666 | −308,022.209 | 1 | 0.199 | −0.839 | 1.066 | 1.022 | 2.173 |
2 | 0.801 | 0.867 | 0.620 | 3.204 | 3.335 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagener, M.; Bekker, A.; Arashi, M. Mastering the Body and Tail Shape of a Distribution. Mathematics 2021, 9, 2648. https://doi.org/10.3390/math9212648
Wagener M, Bekker A, Arashi M. Mastering the Body and Tail Shape of a Distribution. Mathematics. 2021; 9(21):2648. https://doi.org/10.3390/math9212648
Chicago/Turabian StyleWagener, Matthias, Andriette Bekker, and Mohammad Arashi. 2021. "Mastering the Body and Tail Shape of a Distribution" Mathematics 9, no. 21: 2648. https://doi.org/10.3390/math9212648
APA StyleWagener, M., Bekker, A., & Arashi, M. (2021). Mastering the Body and Tail Shape of a Distribution. Mathematics, 9(21), 2648. https://doi.org/10.3390/math9212648