Risk Transfer in an Electricity Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forward Risk Premia
2.2. Contagion Model and Transfer Function
- Initial conditions: shows a descriptive statistics review of variables that influence the FRP, those statistics identify whether they present information of high variance, this information is in the data description section.
- Stationarity identification: ADF, KPSS, and PP to determine stationarity in the series are necessary for the ADL models; later, the Granger test is applied to identify whether the series are the spurious or present level of causality level X to Y.
- Identification of the impulse–response function: this procedure consists of two parts, a pre-whitening the X variables as described in Equation (1) and a process of identification of the impulse–response function (IRF) as shown as an example in Equation (2).
- Estimation of ADL models: in this step, the components will be fit to find the best estimable model according to the IRF information, looking for the white noise process in residuals, and if not, the theory of [11,12] suggest to create an additional ARIMA or SARIMA model on the residuals to fit the pure white noise.
- Post-estimation review: MAPE is used to verify the level of fit of each estimated model.
2.2.1. Initial Conditions
2.2.2. Identification of the Impulse–Response Function (IRF)
Data Prewhitening
Identification of the Impulse–Response Function
2.2.3. Estimated Autoregressive Distributed Lag Models
2.2.4. Postestimation Review
3. Results and Discussions
3.1. Data Description
3.2. Initial Analysis of the Variables
3.3. Prewhitened Models
3.4. Impulse–Response Function Series (IRF)
3.5. Transfer Function Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pantoja-Robayo, J. Modelling risk for electric power markets. Rev. Innovar 2012, 22, 51–66. [Google Scholar]
- Pilipovic, D. Energy Risk:Valuing and Managing Energy Derivatives, 2nd ed.; Mc Graw Hill: New York, NY, USA, 2007; Volume 8, ISBN 978-0786312313. [Google Scholar] [CrossRef]
- Cartea, Á.; Villaplana, P. Spot price modeling and the valuation of electricity forward contracts: The role of demand and capacity. J. Bank. Financ. 2008, 32, 2502–2519. [Google Scholar] [CrossRef] [Green Version]
- Trespalacios, A.; Pantoja, J.; Fernández, Ó.A. Análisis de Mercados de Electricidad, 1st ed.; Editorial EAFIT: Medelín, Colombia, 2017; ISBN 978-958-720-467-4. [Google Scholar]
- Longstaff, F.A.; Wang, A.W. Electricity forward prices: A high-frequency empirical analysis. J. Financ. 2004, 59, 1877–1900. [Google Scholar] [CrossRef] [Green Version]
- Koten, S. Van Forward premia in electricity markets: A replication study. Energy Econ. 2020, 89, 104812. [Google Scholar] [CrossRef]
- Botterud, A.; Kristiansen, T.; Ilic, M.D. The relationship between spot and futures prices in the Nord Pool electricity market. Energy Econ. 2010, 32, 967–978. [Google Scholar] [CrossRef]
- Bunn, D.W.; Chen, D. The forward premium in electricity futures. J. Empir. Financ. 2013, 23, 173–186. [Google Scholar] [CrossRef]
- Xiao, Y.; Colwell, D.B.; Bhar, R. Risk Premium in Electricity Prices: Evidence from the PJM Market. J. Futures Mark. 2015, 35, 776–793. [Google Scholar] [CrossRef]
- Ruddell, K.; Philpott, A.; Downward, A. Market power and forward prices. Econ. Lett. 2018, 166, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Galeano González, D.A. A Transfer Function Model for Volatilities between Water Inflows and Spot Prices for Colombian Electricity Market. Master’s Thesis, National University of Colombia, Bogotá, Colombia, 2015. [Google Scholar]
- Bessembinder, H.; Lemmon, M. Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets. J. Financ. 2007, 57, 1347–1382. [Google Scholar] [CrossRef]
- Wei, W.W. Time Series Analysis Univariate and Multivariate Methods, 2nd ed.; Pearson Addison Wesley: Boston, MA, USA, 2006; ISBN 0-321-32216-9. [Google Scholar]
- Enders, W. Applied Econometrics Time Series, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-118-80856-6. [Google Scholar]
- Franco, C.J.; Velásquez, J.D.; Cardona, D. Micromundo para simular un mercado eléctrico de corto plazo. Cuad. Econ. 2012, 31, 229–256. [Google Scholar]
- Greene, W.H. Econometric Analysis; Pearson/Prentice Hall: New York, NY, USA, 2008; ISBN 9780135132456. [Google Scholar]
- Tsay, R.S. Analysis of Financial Time Series; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2005; ISBN 9780471690740. [Google Scholar]
- Andrews, B.H.; Dean, M.D.; Swain, R.; Cole, C. Building ARIMA and ARIMAX Models for Predicting Long-Term Disability Benefit Application Rates in the Public/Private Sectors; Society of Actuaries(SOA): Schaumbug, IL, USA, 2013. [Google Scholar]
- Kang, H. The optimal lag selection and transfer function analysis in Granger causality tests. J. Econ. Dyn. Control. 1989, 13, 151–169. [Google Scholar] [CrossRef]
- Sheng, W. How to select a reasonable lag order for testing linear Granger causality? Far East. J. Math. Sci. 2006, 28, 257–272. [Google Scholar]
- Park, W.K. Granger causality between government revenues and expenditures in Korea. J. Econ. Dev. 1998, 23, 145–155. [Google Scholar]
- Ghiani, G.; Laporte, G.; Musmanno, R. Introduction to Logistics Systems Planning and Control; John Wiley & Sons Ltd.: Chichester, UK, 2004; ISBN 0-470-84916-9. [Google Scholar]
- Arnhold, E.; Milani, K.F. Rank-ordering coefficients of variation for popping expansion. Acta Sci.-Agron. 2011, 33, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.; Popova, J. Storage and the electricity forward premium. Energy Econ. 2008, 30, 1712–1727. [Google Scholar] [CrossRef]
- Climate Prediction Center Cold and Warm Episodes By Season (ENSO). Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 15 May 2021).
- XM (Grupo ISA) Información de Precios y Cantidades Para Los Próximos 60 Meses. Available online: https://www.xm.com.co/Paginas/Mercado-de-energia/informacion-de-precios-y-cantidades-para-los-proximos-60-meses.aspx (accessed on 15 May 2021).
Min | 1st Q | Median | Mean | 3rd Q | Max | Std.Dev | CV | |
---|---|---|---|---|---|---|---|---|
SPOT | 46.88 | 83.25 | 122.33 | 157.39 | 181.81 | 1107.40 | 139.58 | 0.89 |
HYDRO | 73.65 | 112.60 | 135.33 | 136.54 | 166.43 | 205.44 | 36.70 | 0.27 |
COAL | 20.98 | 35.75 | 38.87 | 39.15 | 42.02 | 52.14 | 5.95 | 0.15 |
GAS | 2.70 | 5.35 | 6.65 | 7.64 | 9.49 | 18.22 | 3.22 | 0.42 |
DEMAND | 0.46 | 1.81 | 3.00 | 3.21 | 4.39 | 9.50 | 1.78 | 0.55 |
SUMTHERM | 38.81 | 45.77 | 50.33 | 50.36 | 55.14 | 62.57 | 5.50 | 0.11 |
ONI | 3.55 | 7.51 | 9.35 | 11.28 | 14.35 | 28.49 | 5.12 | 0.45 |
FRP | −3.80 | 11.12 | 21.31 | 20.84 | 20.85 | 38.08 | 11.63 | 0.55 |
Test | SPOT | HYDRO | COAL | GAS | DEMAND | SUMTHERM | ONI | FRP |
---|---|---|---|---|---|---|---|---|
ADF | 0.000 | 0.000 | 0.096 | 0.010 | 0.010 | 0.010 | 0.062 | 0.039 |
KPSS | 0.000 | 0.000 | 0.010 | 0.098 | 0.047 | 0.010 | 0.010 | 0.085 |
PP | 0.002 | 0.002 | 0.014 | 0.010 | 0.049 | 0.010 | 0.010 | 0.078 |
FRP vs. Variable | p-Value | AIC * |
---|---|---|
Y~X | ||
SPOT | 0.032 | 687.5 |
HYDRO | 0.437 | 699.5 |
COAL | 0.472 | 699.9 |
GAS | 0.680 | 702.7 |
DEMAND | 0.077 | 691.0 |
SUMTHERM | 0.313 | 697.5 |
ONI | 0.863 | 705.4 |
Variable | ARIMA | Parameter | Coeff. | |||
---|---|---|---|---|---|---|
SPOT | (1,1,1) | ar1 ma1 | 0.793 −0.979 | 0.000 0.000 | 83.29 | 8.77 |
HYDRO | (1,1,1) | ar1 | 0.838 | 0.000 | 2.86 | 7.17 |
ma1 | −0.968 | 0.000 | ||||
GAS | (0,1,0) | --- | ---- | ---- | ---- | ---- |
COAL | (1,1,1) | ar1 | 0.779 | 0.000 | 1.08 | 8.71 |
ma1 | −0.975 | 0.000 | ||||
DEMAND | (2,1,0) | ar1 | −0.816 | 0.000 | 1.54 | 14.64 |
ar2 | −0.256 | 0.001 | ||||
SUMTHERM | (0,1,0) | --- | ---- | ---- | ---- | ---- |
ONI | (2,1,1) | ar1 | 1.787 | 0.000 | 0.11 | 53.07 |
ar2 | −0.852 | 0.000 | ||||
ma1 | −0.963 | 0.000 |
Variables | Coeff. | p-Value | Coeff. | p-Value | MAPE | |||
---|---|---|---|---|---|---|---|---|
HYDRO | T1-AR1 | 1.512 | 0.000 | sar1 sma1 | 0.854 −0.628 | 0.000 0.080 | 6.74% | |
T1-AR2 | −1.502 | 0.000 | ||||||
T1-AR3 | 0.503 | 0.000 | ||||||
T1-MA0 | 0.176 | 0.005 | ||||||
T1-MA1 | −0.206 | 0.002 | ||||||
T1-MA2 | 0.228 | 0.000 | ||||||
COAL | T1-AR1 | −0.899 | 0.000 | sar1 sma1 | 0.833 −0.535 | 0.000 0.018 | 6.88% | |
T1-MA0 | −0.488 | 0.003 | ||||||
T1-MA1 | −0.553 | 0.001 | ||||||
DEMAND | T1-AR1 | −0.657 | 0.000 | sar1 sar2 | 0.285 0.198 | 0.000 0.013 | 6.25% | |
T1-AR2 | −0.255 | 0.000 | ||||||
T1-AR3 | −0.731 | 0.000 | ||||||
T1-AR4 | −0.903 | 0.000 | ||||||
T1-MA0 | −0.063 | 0.021 | ||||||
T1-MA1 | −0.072 | 0.009 | ||||||
ONI | T1-AR1 | −0.478 | 0.000 | sar1 sar2 sma1 | −0.394 0.507 0.799 | 0.001 0.000 0.000 | 7.29% | |
T1-AR2 | −0.931 | 0.000 | ||||||
T1-MA0 | −1.988 | 0.064 |
Model | Equation |
---|---|
HYDRO | |
COAL | |
DEMAND | |
ONI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, D.E.; Trespalacios, A.; Galeano, D. Risk Transfer in an Electricity Market. Mathematics 2021, 9, 2661. https://doi.org/10.3390/math9212661
Rodriguez DE, Trespalacios A, Galeano D. Risk Transfer in an Electricity Market. Mathematics. 2021; 9(21):2661. https://doi.org/10.3390/math9212661
Chicago/Turabian StyleRodriguez, David Esteban, Alfredo Trespalacios, and David Galeano. 2021. "Risk Transfer in an Electricity Market" Mathematics 9, no. 21: 2661. https://doi.org/10.3390/math9212661
APA StyleRodriguez, D. E., Trespalacios, A., & Galeano, D. (2021). Risk Transfer in an Electricity Market. Mathematics, 9(21), 2661. https://doi.org/10.3390/math9212661