Contact Dynamics: Legendrian and Lagrangian Submanifolds
Abstract
:1. Introduction
2. The Classical Tulczyjew’s Triple
2.1. (Special) Symplectic Manifolds
- is called an isotropic submanifold if . In this case, the dimension of is less or equal to the half of the dimension of .
- is called a coisotropic submanifold if . In this case, the dimension of is greater or equal to the half of the dimension of .
- is called a Lagrangian submanifold if . In this case, the dimension of is equal to the half of the dimension of .
2.2. Morse Families
2.3. Merging Two Special Symplectic Structures
2.4. The Classical Tulczyjew’s Triple
2.5. The Legendre Transformation
3. Contact Dynamics
3.1. Contact Manifolds
3.2. Submanifolds of Contact Manifolds
- Isotropic if .
- Coisotropic if .
- Legendrian if .
3.3. Contact Diffeomorphisms and Contact Hamiltonian Systems
3.4. Contact Lagrangian Dynamics
4. Tulczyjew’s triple for Contact Geometry
4.1. Special Contact Structures
4.2. Tangent Contact Manifold
4.3. Contact Tulczyjew’s Triple
4.4. Evolution Contact Tulczyjew’s Triple
4.5. The Legendre Transformation
5. Example: The Ideal Gas
5.1. A Quantomorphism on the Euclidean Space
5.2. Equilibrium Thermodynamics
5.3. Hamiltonian Flow and Its Legendrian Realization
5.4. Evolutionary Flow and Its Lagrangian Realization
6. Discussion
- In Section 4.2, we have established that the image space of a contact Hamiltonian vector field is a Legendrian submanifold of the tangent contact manifold. Evidently, not all Legendrian submanifolds determine explicit dynamical equations. This observation motivates us to define the notion of an implicit Hamiltonian Contact Dynamics as a non-horizontal Legendrian submanifold of the tangent contact manifold. We refer to [75] for a similar discussion done for the case of symplectic dynamics and integrability of the non-horizontal Lagrangian submanifolds. We find it interesting to elaborate the integrability of implicit Hamiltonian contact dynamics.
- Following, the first question raised in this section, we plan to write a Hamilton–Jacobi theory for implicit Hamiltonian contact dynamics. Hamilton–Jacobi theory for (explicit) Hamiltonian contact dynamics is recently examined in [72,76]. Hamilton–Jacobi theory for implicit symplectic dynamics is discussed in [77,78].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abraham, R.; Marsden, J.E. Foundations of Mechanics; Benjamin/Cummings Publishing: Reading, MA, USA, 1978. [Google Scholar]
- Holm, D.D.; Schmah, T.; Stoica, C. Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions; Oxford University Press: Oxford, UK, 2009; Volume 12. [Google Scholar]
- de León, M.; Rodrigues, P.R. Methods of Differential Geometry in Analytical Mechanics; North-Holland Mathematics Studies; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1989; Volume 158, p. x+483. [Google Scholar]
- Libermann, P.; Marle, C.M. Symplectic Geometry and Analytical Mechanics; Mathematics and Its Applications; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1987; Volume 35, p. xvi+526. [Google Scholar]
- Dirac, P.A.M. Generalized Hamiltonian dynamics. Proc. R. Soc. Lond. Ser. A 1958, 246, 326–332. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Belfer Graduate School of Science Monographs Series; Belfer Graduate School of Science, New York; Produced and Distributed by Academic Press, Inc.: New York, NY, USA, 1967; Volume 2, p. v+87. [Google Scholar]
- Gotay, M.; Nester, J.M.; Hinds, G. Presymplectic manifolds and the Dirac-Bergmann theory of constraints. J. Math. Phys. 1978, 19, 2388–2399. [Google Scholar] [CrossRef]
- Skinner, R.; Rusk, R. Generalized Hamiltonian dynamics. I. Formulation on T*Q ⊕ TQ. J. Math. Phys. 1983, 24, 2589–2594. [Google Scholar] [CrossRef]
- Tulczyjew, W.M.; Urbański, P. A Slow and Careful Legendre Transformation for Singular Lagrangians. The Infeld Centennial Meeting (Warsaw, 1998). Acta Phys. Pol. 1999, 10, 2909–2978. [Google Scholar]
- Tulczyjew, W.M. Les sous-variétés Lagrangiennes et la dynamique Hamiltonienne. Comptes Rendus Acad. Sci. Paris Ser. AB 1976, 283, A15–A18. [Google Scholar]
- Tulczyjew, W.M. Hamiltonian Systems, Lagrangian Systems and the Legendre Transformation. In Symposia Mathematica; Academic Press: London, UK, 1974; Volume XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), pp. 247–258. [Google Scholar]
- Tulczyjew, W.M. The Legendre transformation. Ann. Inst. H. Poincaré Sect. A (N.S.) 1977, 27, 101–114. [Google Scholar]
- Weinstein, A. The symplectic “category”. In Differential Geometric Methods in Mathematical Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; pp. 45–51. [Google Scholar]
- de León, M.; Lacomba, E.A. Lagrangian submanifolds and higher-order mechanical systems. J. Phys. A 1989, 22, 3809–3820. [Google Scholar] [CrossRef]
- Esen, O.; Guha, P. On the geometry of the Schmidt-Legendre transformation. J. Geom. Mech. 2018, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; Gümral, H. Tulczyjew’s triplet for Lie groups I: Trivializations and reductions. J. Lie Theory 2014, 24, 1115–1160. [Google Scholar]
- Esen, O.; Gümral, H. Tulczyjew’s triplet for Lie groups II: Dynamics. J. Lie Theory 2017, 27, 329–356. [Google Scholar]
- Esen, O.; Gümral, H.; Sütlü, S. Tulczyew triplets for Lie groups III: Higher order dynamics and reductions for iterated bundles. arXiv 2021, arXiv:2102.10807. [Google Scholar]
- Grabowska, K.; Zając, M. The Tulczyjew triple in mechanics on a Lie group. J. Geom. Mech. 2016, 8, 413–435. [Google Scholar] [CrossRef] [Green Version]
- García-Toraño Andrés, E.; Guzmán, E.; Marrero, J.C.; Mestdag, T. Reduced dynamics and Lagrangian submanifolds of symplectic manifolds. J. Phys. A 2014, 47, 225203. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; Kudeyt, M.; Sütlü, S. Tulczyjew’s Triplet with an Ehresmann connection I: Trivialization and Reduction. arXiv 2020, arXiv:2007.11662. [Google Scholar]
- Grabowski, J.; Grabowska, K.; Urbański, P. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. J. Geom. Mech. 2014, 6, 503–526. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.M.; Guzmán, E.; Marrero, J.C. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. J. Geom. Mech. 2012, 4, 1–26. [Google Scholar] [CrossRef]
- Cantrijn, F.; Ibort, A.; de León, M. On the geometry of multisymplectic manifolds. J. Aust. Math. Soc. (Ser. A) 1999, 66, 303–330. [Google Scholar] [CrossRef] [Green Version]
- de León, M.; de Diego, D.M.; Santamarıa-Merino, A. Tulczyjew’s triples and Lagrangian submanifolds in classical field theory. In Applied Differential Geometry and Mechanics; Academia Press: Ghent, Belgium, 2003; p. 189. [Google Scholar]
- de León, M.; Lacomba, E.A.; Rodrigues, P.R. Special presymplectic manifolds, Lagrangian submanifolds and the Lagrangian-Hamiltonian systems on jet bundles. In Proceedings of the First “Dr. Antonio A. R. Monteiro” Congress on Mathematics (Spanish) (Bahía Blanca, 1991), Bahía Blanca, Argentina, 7–9 August 1991; pp. 103–122. [Google Scholar]
- de León, M.; Salgado, M.; Vilariño, S. Methods of Differential Geometry in Classical Field Theories; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2016; p. xiii+207. [Google Scholar]
- de León, M.; Vilariño, S. Lagrangian submanifolds in k-symplectic settings. Monatsh. Math. 2013, 170, 381–404. [Google Scholar] [CrossRef] [Green Version]
- Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. Geometry of multisymplectic Hamiltonian first-order field theories. J. Math. Phys. 2000, 41, 7402–7444. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, K. A Tulczyjew triple for classical fields. J. Phys. A 2012, 45, 145207. [Google Scholar] [CrossRef]
- Grabowska, K.; Grabowski, J. Tulczyjew triples: From statics to field theory. J. Geom. Mech. 2013, 5, 445–472. [Google Scholar] [CrossRef] [Green Version]
- Román-Roy, N.; Rey, A.M.; Salgado, M.; Vilariño, S. On the k-symplectic, k-cosymplectic and multisymplectic formalisms of classical field theories. J. Geom. Mech. 2011, 3, 113–137. [Google Scholar] [CrossRef]
- Grabowska, K.; Vitagliano, L. Tulczyjew triples in higher derivative field theory. J. Geom. Mech. 2015, 7, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Bravetti, A. Contact Hamiltonian dynamics: The concept and its use. Entropy 2017, 19, 535. [Google Scholar] [CrossRef]
- Bravetti, A.; Cruz, H.; Tapias, D. Contact Hamiltonian mechanics. Ann. Phys. 2017, 376, 17–39. [Google Scholar] [CrossRef] [Green Version]
- de León, M.; Lainz Valcázar, M. Contact Hamiltonian systems. J. Math. Phys. 2019, 60, 102902. [Google Scholar] [CrossRef]
- de León, M.; Lainz Valcázar, M. A review on contact Hamiltonian and Lagrangian systems. Rev. Acad. Canaria Cienc. 2019, XXXI, 1–46. [Google Scholar]
- Gaset, J.; Gracia, X.; Munoz-Lecanda, M.C.; Rivas, X.; Román-Roy, N. New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050090. [Google Scholar] [CrossRef]
- de León, M.; Sardón, C. Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems. J. Phys. A 2017, 50, 255205. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A.; de León, M.; Marrero, J.C.; Padrón, E. Invariant measures for contact Hamiltonian systems: Symplectic sandwiches with contact bread. J. Phys. A 2020, 53, 455205. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Cruz, H.; Marmo, G. Contact manifolds and dissipation, classical and quantum. Ann. Phys. 2018, 398, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A. Contact geometry and thermodynamics. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1940003. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhamidipati, C. Contact geometry and thermodynamics of black holes in AdS spacetimes. Phys. Rev. D 2019, 100, 126020. [Google Scholar] [CrossRef] [Green Version]
- Mrugala, R.; Nulton, J.D.; Schön, J.C.; Salamon, P. Contact structure in thermodynamic theory. Rep. Math. Phys. 1991, 29, 109–121. [Google Scholar] [CrossRef]
- Grmela, M. Contact geometry of mesoscopic thermodynamics and dynamics. Entropy 2014, 16, 1652–1686. [Google Scholar] [CrossRef] [Green Version]
- Grmela, M. Multiscale Thermodynamics. Entropy 2021, 23, 165. [Google Scholar] [CrossRef]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; de Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Wang, K.; Wang, L.; Yan, J. Implicit variational principle for contact Hamiltonian systems. Nonlinearity 2017, 30, 492–515. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Yan, J. Variational principle for contact Hamiltonian systems and its applications. J. Math. Pures Appl. 2019, 123, 167–200. [Google Scholar] [CrossRef] [Green Version]
- Simoes, A.A.; de León, M.; Lainz Valcázar, M.; Martín de Diego, D. Contact geometry for simple thermodynamical systems with friction. Proc. R. Soc. A 2020, 476, 20200244. [Google Scholar] [CrossRef]
- Herglotz, G. Berührungstransformationen, Lectures at the University of Göttingen; University of Göttingen: Göttingen, Germany, 1930. [Google Scholar]
- de León, M.; Lainz Valcázar, M. Singular Lagrangians and precontact Hamiltonian systems. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950158. [Google Scholar] [CrossRef]
- de León, M.; Gaset, J.; Lainz Valcázar, M.; Rivas, X.; Román-Roy, N. Unified Lagrangian-Hamiltonian formalism for contact systems. Fortschr. Phys. 2020, 68, 2000045. [Google Scholar] [CrossRef]
- Cannas da Silva, A. Lectures on Symplectic Geometry; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1764. [Google Scholar] [CrossRef]
- Lawruk, B.; Śniatycki, J.; Tulczyjew, W.M. Special symplectic spaces. J. Differ. Equ. 1975, 17, 477–497. [Google Scholar] [CrossRef] [Green Version]
- Śniatycki, J.; Tulczyjew, W.M. Generating forms of Lagrangian submanifolds. Indiana Univ. Math. J. 1972, 22, 267–275. [Google Scholar] [CrossRef]
- Marle, C.M. On Jacobi manifolds and Jacobi bundles. In Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989); Springer: New York, NY, USA, 1991; Volume 20, pp. 227–246. [Google Scholar]
- Benenti, S. Hamiltonian Structures and Generating Families; Universitext; Springer: New York, NY, USA, 2011; p. xiv+258. [Google Scholar]
- Weinstein, A. Lectures on Symplectic Manifolds; American Mathematical Society: Providence, RI, USA, 1977; p. iv+48. [Google Scholar]
- Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Pure and Applied Mathematics, No. 16; Marcel Dekker, Inc.: New York, NY, USA, 1973; p. ix+423. [Google Scholar]
- Godbillon, C. Géométrie Différentielle et Mécanique Analytique; Hermann: Paris, Fance, 1969; p. 183. [Google Scholar]
- Urbański, P. Double Vector Bundles in Classical Mechanics. Rend. Semin. Mat. 1996, 54, 405–421. [Google Scholar]
- Kirillov, A.A. Local Lie algebras. Uspehi Mat. Nauk 1976, 31, 57–76. [Google Scholar] [CrossRef]
- Lichnerowicz, A. Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. 1978, 57, 453–488. [Google Scholar]
- Bruce, A.J.; Grabowska, K.; Grabowski, J. Remarks on contact and Jacobi geometry. SIGMA Symmetry Integr. Geom. Methods Appl. 2017, 13, 059. [Google Scholar] [CrossRef] [Green Version]
- de León, M.; Marrero, J.C.; Padrón, E. Lichnerowicz-Jacobi cohomology of Jacobi manifolds. C. R. Acad. Sci. Paris Sér. I Math. 1997, 324, 71–76. [Google Scholar] [CrossRef]
- de León, M.; Lainz Valcázar, M. Infinitesimal symmetries in contact Hamiltonian systems. J. Geom. Phys. 2020, 153, 103651. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, R.; de León, M.; Marrero, J.C.; Martín de Diego, D. Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms. J. Phys. A 1997, 30, 5427–5444. [Google Scholar] [CrossRef] [Green Version]
- Banyaga, A. The Structure of Classical Diffeomorphism Groups; Mathematics and its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1997; Volume 400, p. xii+197. [Google Scholar]
- de León, M.; Lainz Valcázar, M.; Muñiz Brea, A. The Hamilton–Jacobi theory for contact Hamiltonian systems. arXiv 2021, arXiv:2103.17017. [Google Scholar]
- Guenther, R.B.; Schwerdtfeger, H.; Herglotz, G.; Guenther, C.; Gottsch, J. The Herglotz Lectures on Contact Transformations and Hamiltonian Systems; Juliusz Schauder Center for Nonlinear Studies; Nicholas Copernicus University: Toruń, Poland, 1996. [Google Scholar]
- Simoes, A.A.; Martín de Diego, D.; Lainz Valcázar, M.; de León, M. The geometry of some thermodynamic systems. arXiv 2020, arXiv:2012.07404. [Google Scholar]
- Mendella, G.; Marmo, G.; Tulczyjew, W.M. Integrability of implicit differential equations. J. Phys. A 1995, 28, 149–163. [Google Scholar] [CrossRef]
- Grillo, S.; Padrón, E. Extended Hamilton-Jacobi theory, contact manifolds, and integrability by quadratures. J. Math. Phys. 2020, 61, 012901. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; de León, M.; Sardón, C. A Hamilton-Jacobi theory for implicit differential systems. J. Math. Phys. 2018, 59, 022902. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; de León, M.; Sardón, C. A Hamilton-Jacobi formalism for higher order implicit Lagrangians. J. Phys. A 2020, 53, 075204. [Google Scholar] [CrossRef] [Green Version]
- de León, M.; Gaset, J.; Laínz, M.; Muñoz Lecanda, M.C.; Román-Roy, N. Higher-order contact mechanics. Ann. Phys. 2021, 425, 168396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esen, O.; Lainz Valcázar, M.; de León, M.; Marrero, J.C. Contact Dynamics: Legendrian and Lagrangian Submanifolds. Mathematics 2021, 9, 2704. https://doi.org/10.3390/math9212704
Esen O, Lainz Valcázar M, de León M, Marrero JC. Contact Dynamics: Legendrian and Lagrangian Submanifolds. Mathematics. 2021; 9(21):2704. https://doi.org/10.3390/math9212704
Chicago/Turabian StyleEsen, Oğul, Manuel Lainz Valcázar, Manuel de León, and Juan Carlos Marrero. 2021. "Contact Dynamics: Legendrian and Lagrangian Submanifolds" Mathematics 9, no. 21: 2704. https://doi.org/10.3390/math9212704
APA StyleEsen, O., Lainz Valcázar, M., de León, M., & Marrero, J. C. (2021). Contact Dynamics: Legendrian and Lagrangian Submanifolds. Mathematics, 9(21), 2704. https://doi.org/10.3390/math9212704