On the Oscillation of Solutions of Differential Equations with Neutral Term
Abstract
:1. Introduction
2. Oscillation Results
- (I)
- there exists such that the functions , are of constant sign on
- (II)
- there exists a number when r is even, when r is odd, such that, for ,
3. Philos-Type Oscillation Results
- (i)
- on and for with
- (ii)
- has a continuous and nonpositive partial derivative on and such that
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Dynamic Equations; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Bainov, D.D.; Mishev, D.P. Oscillation Theory for Neutral Differential Equations with Delay; Adam Hilger: New York, NY, USA, 1991. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishing: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Saker, S. Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders; LAP Lambert Academic Publishing: Chisinau, Moldova, 2010. [Google Scholar]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Dzrina, J.; Jadlovska, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Meth. Appl. Sci. 2020, 43, 10041–10053. [Google Scholar] [CrossRef]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi linear neutral differential equations. Adv. Differ. Equ. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Awrejcewicz, J.; Bazighifan, O. A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential Equations. Mathematics 2020, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Jadlovska, I. New Criteria for Sharp Oscillation of Second-OrderNeutral Delay Differential Equations. Mathematics 2021, 9, 2089. [Google Scholar] [CrossRef]
- Jadlovska, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Dzurina, J.; Jadlovska, I. Oscillatory Properties of Third-Order Neutral Delay Differential Equations with Noncanonical Operators. Mathematics 2019, 7, 1177. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Cai, Y.; Fu, Y.; Li, T. Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2015, 2015, 267. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Mofarreh, F.; Nonlaopon, K. On the Qualitative Behavior of Third-Order Differential Equations with a Neutral Term. Symmetry 2021, 13, 1287. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Muhib, A.; Abdeljawad, T.; Moaaz, O.; Elabbasy, E.M. Oscillatory Properties of Odd-Order Delay Differential Equations with Distribution Deviating Arguments. Appl. Sci. 2020, 10, 5952. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 2016, 61, 35–41. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations. Appl. Math. Lett. 2017, 67, 53–59. [Google Scholar] [CrossRef]
- Kumar, M.S.; Bazighifan, O.; Almutairi, A.; Chalishajar, D.N. Philos-Type Oscillation Results for Third-Order Differential Equation with Mixed Neutral Terms. Mathematics 2021, 9, 1021. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.; Peterson, A. Oscillation of second order neutral delay differential equations. Adv. Dyn. Sys. Appl. 2008, 3, 53–71. [Google Scholar]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Shi, Y. Oscillation criteria for nth order nonlinear neutral differential equations. Appl. Math. Comput. 2014, 235, 423–429. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhib, A.; Elagan, S.K.; Zakarya, M. New Improved Results for Oscillation of Fourth-Order Neutral Differential Equations. Mathematics 2021, 9, 2388. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1998, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yan, J. Oscillation behavior of even order neutral differential equations with variable coefficients. Appl. Math. Lett. 2006, 19, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
- Li, T.X.; Han, Z.L.; Zhao, P.; Sun, S.R. Oscillation of even-order neutral delay differential equations. Adv. Differ. Equ. 2010, 2010, 184180. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ghanim, F.; Awrejcewicz, J.; Al-Ghafri, K.S.; Al-Kandari, M. New Criteria for Oscillation of Half-Linear Differential Equations with p-Laplacian-like Operators. Mathematics 2021, 9, 2584. [Google Scholar] [CrossRef]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 2001, 262, 601–622. [Google Scholar] [CrossRef] [Green Version]
- Elabbasy, E.M.; Cesarano, C.; Moaaz, O.; Bazighifan, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. Symmetry 2019, 18, 1434. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mofarreh, F.; Almutairi, A.; Bazighifan, O.; Aiyashi, M.A.; Vîlcu, A.-D. On the Oscillation of Solutions of Differential Equations with Neutral Term. Mathematics 2021, 9, 2709. https://doi.org/10.3390/math9212709
Mofarreh F, Almutairi A, Bazighifan O, Aiyashi MA, Vîlcu A-D. On the Oscillation of Solutions of Differential Equations with Neutral Term. Mathematics. 2021; 9(21):2709. https://doi.org/10.3390/math9212709
Chicago/Turabian StyleMofarreh, Fatemah, Alanoud Almutairi, Omar Bazighifan, Mohammed A. Aiyashi, and Alina-Daniela Vîlcu. 2021. "On the Oscillation of Solutions of Differential Equations with Neutral Term" Mathematics 9, no. 21: 2709. https://doi.org/10.3390/math9212709
APA StyleMofarreh, F., Almutairi, A., Bazighifan, O., Aiyashi, M. A., & Vîlcu, A. -D. (2021). On the Oscillation of Solutions of Differential Equations with Neutral Term. Mathematics, 9(21), 2709. https://doi.org/10.3390/math9212709