Fracture Modelling of a Cracked Pressurized Cylindrical Structure by Using Extended Iso-Geometric Analysis (X-IGA)
Abstract
:1. Introduction
2. Outline on B-splines, NURBS, and IGA Concepts
2.1. Curve and Surface Building with B-spline
2.2. Non-Uniform Rational B-splines (NURBS)
2.3. Curve and Surface Building with NURBS
2.4. Governing Equation
2.5. Variational Formulation
3. Extended Iso-Geometric Analysis (X-IGA)
3.1. X-IGA Formulation for Cracks
3.2. Construction of 2-D Pipe with X-IGA Concept
3.3. Enrichment Topology for Control Points
4. Numerical Integration in the Elastic Field
5. Fracture Parameter Evaluation
6. Process of Implementing a X-FEM Code in ABAQUS
7. Process of Implementing a X-IGA Code in MATLAB
8. Numerical Results and Discussions
8.1. Two-Dimensional Pipe with an Axial Crack under Uniform Pressure
8.2. Evaluation of the Fracture Parameter
8.3. Effect of Pressure on the Fracture Parameter Calculation
9. Conclusions
- The cracked pipe modeling does not need a finer mesh than other numerical techniques. Therefore, the cost of computational will be reduced;
- The regularity of the stress and strain at the crack tip is obtained;
- The geometry was constructed exactly with using NURBS, which avoids the discretization error. Therefore, confident results can be achieved;
- The error on the SIFs is minimal compared to X-IGA implemented by FORTRAN.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsoum, R.S. On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics. Int. J. Numer. Methods Eng. 1976, 10, 25–37. [Google Scholar] [CrossRef]
- Cheung, S.; Luxmoore, A.R. A Finite Element Analysis of Stable Crack Growth in an Aluminium Alloy. Eng. Fract. Mech. 2003, 70, 1153–1169. [Google Scholar] [CrossRef]
- Pasetto, M.; Baek, J.; Chen, J.-S.; Wei, H.; Sherburn, J.A.; Roth, M.J. A Lagrangian/Semi-Lagrangian Coupling Approach for Accelerated Meshfree Modelling of Extreme Deformation Problems. Comput. Methods Appl. Mech. Eng. 2021, 381, 113827. [Google Scholar] [CrossRef]
- Moës, N.; Belytschko, T. Extended Finite Element Method for Cohesive Crack Growth. Eng. Fract. Mech. 2002, 69, 813–833. [Google Scholar] [CrossRef] [Green Version]
- Montassir, S.; Yakoubi, K.; Moustabchir, H.; Elkhalfi, A.; Rajak, D.K.; Pruncu, C.I. Analysis of Crack Behaviour in Pipeline System Using FAD Diagram Based on Numerical Simulation under XFEM. Appl. Sci. 2020, 10, 6129. [Google Scholar] [CrossRef]
- Yakoubi, K.; Montassir, S.; Moustabchir, H.; Elkhalfi, A.; Pruncu, C.I.; Arbaoui, J.; Farooq, M.U. An Extended Finite Element Method (XFEM) Study on the Elastic T-Stress Evaluations for a Notch in a Pipe Steel Exposed to Internal Pressure. Mathematics 2021, 9, 507. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Zheng, H. A Phase Field Numerical Manifold Method for Crack Propagation in Quasi-Brittle Materials. Eng. Fract. Mech. 2021, 241, 107427. [Google Scholar] [CrossRef]
- Partridge, P.W.; Brebbia, C.A. Dual Reciprocity Boundary Element Method; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 94-011-3690-4. [Google Scholar]
- Bazazzadeh, S.; Mossaiby, F.; Shojaei, A. An Adaptive Thermo-Mechanical Peridynamic Model for Fracture Analysis in Ceramics. Eng. Fract. Mech. 2020, 223, 106708. [Google Scholar] [CrossRef]
- Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T. Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method. Int. J. Numer. Methods Eng. 2000, 48, 1741–1760. [Google Scholar] [CrossRef]
- Belytschko, T.; Black, T. Elastic Crack Growth in Finite Elements with Minimal Remeshing. Int. J. Numer. Methods Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Andrade, H.; Leonel, E. An Enriched Dual Boundary Element Method Formulation for Linear Elastic Crack Propagation. Eng. Anal. Bound. Elem. 2020, 121, 158–179. [Google Scholar] [CrossRef]
- Bhardwaj, G.; Singh, I.; Mishra, B.; Bui, T. Numerical Simulation of Functionally Graded Cracked Plates Using NURBS Based XIGA under Different Loads and Boundary Conditions. Compos. Struct. 2015, 126, 347–359. [Google Scholar] [CrossRef]
- Hughes, T.J.; Cottrell, J.A.; Bazilevs, Y. Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement. Comput. Methods Appl. Mech. Eng. 2005, 194, 4135–4195. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T. A Large Deformation, Rotation-Free, Isogeometric Shell. Comput. Methods Appl. Mech. Eng. 2011, 200, 1367–1378. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, S.; Faruque, O.; Alanoly, J.; El-Essawi, M.; Baskaran, R. Current Status of Lsdyna Isogeometric Analysis in Crash Simulation. In Proceedings of the 14th International LS-DYNA Conference, Detroit, MI, USA, 12–14 June 2016. [Google Scholar]
- Latimer, C.; Kópházi, J.; Eaton, M.; McClarren, R. Spatial Adaptivity of the SAAF and Weighted Least Squares (WLS) Forms of the Neutron Transport Equation Using Constraint Based, Locally Refined, Isogeometric Analysis (IGA) with Dual Weighted Residual (DWR) Error Measures. J. Comput. Phys. 2021, 426, 109941. [Google Scholar] [CrossRef]
- Occelli, M.; Elguedj, T.; Bouabdallah, S.; Morançay, L. LR B-Splines Implementation in the Altair RadiossTM Solver for Explicit Dynamics IsoGeometric Analysis. Adv. Eng. Softw. 2019, 131, 166–185. [Google Scholar] [CrossRef]
- Elguedj, T.; Duval, A.; Maurin, F.; Al-Akhras, H. Abaqus User Element Implementation of NURBS Based Isogeometric Analysis. In Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, 10–14 September 2012; pp. 10–14. [Google Scholar]
- Duval, A.; Elguedj, T.; Al-Akhras, H.; Maurin, F. AbqNURBS: Implémentation D’éléments Isogéométriques Dans Abaqus et Outils de Pré-et Post-Traitement Dédiés; CSMA: Giens, France, 2015. [Google Scholar]
- Lai, Y.; Zhang, Y.J.; Liu, L.; Wei, X.; Fang, E.; Lua, J. Integrating CAD with Abaqus: A Practical Isogeometric Analysis Software Platform for Industrial Applications. Comput. Math. Appl. 2017, 74, 1648–1660. [Google Scholar] [CrossRef]
- Xue, Y.; Jin, G.; Ding, H.; Chen, M. Free Vibration Analysis of In-Plane Functionally Graded Plates Using a Refined Plate Theory and Isogeometric Approach. Compos. Struct. 2018, 192, 193–205. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, S.; Wang, Y.; Yang, L.; Li, Z. Nonlinear Free Vibration Analysis of a Rotating Two-Dimensional Functionally Graded Porous Micro-Beam Using Isogeometric Analysis. Eur. J. Mech. -A/Solids 2020, 84, 104083. [Google Scholar] [CrossRef]
- Kamensky, D. Open-Source Immersogeometric Analysis of Fluid–Structure Interaction Using FEniCS and TIGAr. Comput. Math. Appl. 2021, 81, 634–648. [Google Scholar] [CrossRef]
- Simona, A.; Bonaventura, L.; de Falco, C.; Schöps, S. IsoGeometric Approximations for Electromagnetic Problems in Axisymmetric Domains. Comput. Methods Appl. Mech. Eng. 2020, 369, 113211. [Google Scholar] [CrossRef]
- Bucelli, M.; Salvador, M.; Quarteroni, A. Multipatch Isogeometric Analysis for Electrophysiology: Simulation in a Human Heart. Comput. Methods Appl. Mech. Eng. 2021, 376, 113666. [Google Scholar] [CrossRef]
- Rouwane, A.; Bouclier, R.; Passieux, J.-C.; Périé, J.-N. Adjusting Fictitious Domain Parameters for Fairly Priced Image-Based Modeling: Application to the Regularization of Digital Image Correlation. Comput. Methods Appl. Mech. Eng. 2021, 373, 113507. [Google Scholar] [CrossRef]
- Du, X.; Zhao, G.; Wang, W.; Guo, M.; Zhang, R.; Yang, J. NLIGA: A MATLAB Framework for Nonlinear Isogeometric Analysis. Comput. Aided Geom. Des. 2020, 80, 101869. [Google Scholar] [CrossRef]
- Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T. Isogeometric Shell Analysis: The Reissner–Mindlin Shell. Comput. Methods Appl. Mech. Eng. 2010, 199, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Mi, Y.; Yu, X. Isogeometric MITC Shell. Comput. Methods Appl. Mech. Eng. 2021, 377, 113693. [Google Scholar] [CrossRef]
- Sobhani, E.; Masoodi, A.R.; Ahmadi-Pari, A.R. Vibration of FG-CNT and FG-GNP Sandwich Composite Coupled Conical-Cylindrical-Conical Shell. Compos. Struct. 2021, 273, 114281. [Google Scholar] [CrossRef]
- Sobhani, E.; Moradi-Dastjerdi, R.; Behdinan, K.; Masoodi, A.R.; Ahmadi-Pari, A.R. Multifunctional Trace of Various Reinforcements on Vibrations of Three-Phase Nanocomposite Combined Hemispherical-Cylindrical Shells. Compos. Struct. 2021, 279, 114798. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Masoodi, A.R. Analyzing FG Shells with Large Deformations and Finite Rotations. World J. Eng. 2019, 16, 636–647. [Google Scholar] [CrossRef]
- Marathe, S.P.; Raval, H.K. Numerical Investigation on Forming Behavior of Friction Stir Tailor Welded Blanks (FSTWBs) during Single-Point Incremental Forming (SPIF) Process. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 424. [Google Scholar] [CrossRef]
- Temizer, I.; Wriggers, P.; Hughes, T. Contact Treatment in Isogeometric Analysis with NURBS. Comput. Methods Appl. Mech. Eng. 2011, 200, 1100–1112. [Google Scholar] [CrossRef]
- Dimitri, R.; Zavarise, G. Isogeometric Treatment of Frictional Contact and Mixed Mode Debonding Problems. Comput. Mech. 2017, 60, 315–332. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Xia, Z.; Poh, L.H. Structural Design Optimization Using Isogeometric Analysis: A Comprehensive Review. Comput. Modeling Eng. Sci. 2018, 117, 455–507. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Yin, S.; Bui, T.Q.; Liu, C.; Wattanasakulpong, N. Buckling Isogeometric Analysis of Functionally Graded Plates under Combined Thermal and Mechanical Loads. Compos. Struct. 2017, 162, 54–69. [Google Scholar] [CrossRef]
- Kaushik, V.; Ghosh, A. Experimental and XIGA-CZM Based Mode-II and Mixed-Mode Interlaminar Fracture Model for Unidirectional Aerospace-Grade Composites. Mech. Mater. 2021, 154, 103722. [Google Scholar] [CrossRef]
- Melenk, J.M.; Babuška, I. The Partition of Unity Finite Element Method: Basic Theory and Applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 289–314. [Google Scholar] [CrossRef] [Green Version]
- De Luycker, E.; Benson, D.J.; Belytschko, T.; Bazilevs, Y.; Hsu, M.C. X-FEM in Isogeometric Analysis for Linear Fracture Mechanics. Int. J. Numer. Methods Eng. 2011, 87, 541–565. [Google Scholar] [CrossRef] [Green Version]
- Ghorashi, S.S.; Valizadeh, N.; Mohammadi, S. Extended Isogeometric Analysis for Simulation of Stationary and Propagating Cracks. Int. J. Numer. Methods Eng. 2012, 89, 1069–1101. [Google Scholar] [CrossRef]
- Bhardwaj, G.; Singh, I.; Mishra, B. Numerical Simulation of Plane Crack Problems Using Extended Isogeometric Analysis. Procedia Eng. 2013, 64, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, I.V.; Bhardwaj, G.; Mishra, B. A Bézier Extraction Based XIGA Approach for Three-Dimensional Crack Simulations. Adv. Eng. Softw. 2018, 125, 55–93. [Google Scholar] [CrossRef]
- Khatir, S.; Wahab, M.A. A Computational Approach for Crack Identification in Plate Structures Using XFEM, XIGA, PSO and Jaya Algorithm. Theor. Appl. Fract. Mech. 2019, 103, 102240. [Google Scholar] [CrossRef]
- Yadav, A.; Patil, R.; Singh, S.; Godara, R.; Bhardwaj, G. A Thermo-Mechanical Fracture Analysis of Linear Elastic Materials Using XIGA. Mech. Adv. Mater. Struct. 2020, 1–26. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Anitescu, C.; Bordas, S.P.; Rabczuk, T. Isogeometric Analysis: An Overview and Computer Implementation Aspects. Math. Comput. Simul. 2015, 117, 89–116. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yu, T.; Bui, T.Q. Adaptive Extended Isogeometric Upper-Bound Limit Analysis of Cracked Structures. Eng. Fract. Mech. 2020, 235, 107131. [Google Scholar] [CrossRef]
- Khatir, S.; Boutchicha, D.; Le Thanh, C.; Tran-Ngoc, H.; Nguyen, T.; Abdel-Wahab, M. Improved ANN Technique Combined with Jaya Algorithm for Crack Identification in Plates Using XIGA and Experimental Analysis. Theor. Appl. Fract. Mech. 2020, 107, 102554. [Google Scholar] [CrossRef]
- Gu, J.; Yu, T.; Tanaka, S.; Yuan, H.; Bui, T.Q. Crack Growth Adaptive XIGA Simulation in Isotropic and Orthotropic Materials. Comput. Methods Appl. Mech. Eng. 2020, 365, 113016. [Google Scholar] [CrossRef]
- El Fakkoussi, S.; Moustabchir, H.; Elkhalfi, A.; Pruncu, C. Application of the Extended Isogeometric Analysis (X-IGA) to Evaluate a Pipeline Structure Containing an External Crack. J. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Moustabchir, H.; Arbaoui, J.; Azari, Z.; Hariri, S.; Pruncu, C.I. Experimental/Numerical Investigation of Mechanical Behaviour of Internally Pressurized Cylindrical Shells with External Longitudinal and Circumferential Semi-Elliptical Defects. Alex. Eng. J. 2018, 57, 1339–1347. [Google Scholar] [CrossRef]
- Giner, E.; Sukumar, N.; Tarancón, J.; Fuenmayor, F. An Abaqus Implementation of the Extended Finite Element Method. Eng. Fract. Mech. 2009, 76, 347–368. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Jiang, K.; Zhu, X.; Shen, Y.; Hu, P. Extended Isogeometric Analysis Using B++ Splines for Strong Discontinuous Problems. Comput. Methods Appl. Mech. Eng. 2021, 381, 113779. [Google Scholar] [CrossRef]
- Mohammadi, S. Extended Finite Element Method: For Fracture Analysis of Structures; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 0-470-69799-7. [Google Scholar]
- Béchet, É.; Minnebo, H.; Moës, N.; Burgardt, B. Improved Implementation and Robustness Study of the X-FEM for Stress Analysis around Cracks. Int. J. Numer. Methods Eng. 2005, 64, 1033–1056. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Godara, R.; Bhardwaj, G. A Review on XIGA Method for Computational Fracture Mechanics Applications. Eng. Fract. Mech. 2020, 230, 107001. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Bordas, S. Extended Isogeometric Analysis for Strong and Weak Discontinuities. In Isogeometric Methods for Numerical Simulation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 21–120. [Google Scholar]
- Moustabchir, H.; Zitouni, A.; Hariri, S.; Gilgert, J.; Pruncu, C. Experimental–Numerical Characterization of the Fracture Behaviour of P264GH Steel Notched Pipes Subject to Internal Pressure. Iran. J. Sci. Technol. Trans. Mech. Eng. 2018, 42, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Moustabchir, H.; Pruncu, C.; Azari, Z.; Hariri, S.; Dmytrakh, I. Fracture Mechanics Defect Assessment Diagram on Pipe from Steel P264GH with a Notch. Int. J. Mech. Mater. Des. 2016, 12, 273–284. [Google Scholar] [CrossRef]
- Creating a Contour Integral Crack. Available online: https://abaqus-docs.mit.edu/2017/English/SIMACAECAERefMap/simacae-t-enghelpcrack.htm (accessed on 6 May 2021).
- Suresh Kumar, S.; Naren Balaji, V. Mode-I, Mode-II, and Mode-III Stress Intensity Factor Estimation of Regular-and Irregular-Shaped Surface Cracks in Circular Pipes. J. Fail. Anal. Prev. 2020, 20, 853–867. [Google Scholar] [CrossRef]
- Gajdoš, Ľ.; Šperl, M. Evaluating the Integrity of Pressure Pipelines by Fracture Mechanics. Appl. Fract. Mech. 2012, 283. [Google Scholar]
- Moustabchir, H. Etude Des Défauts Présents Dans Des Tuyaux Soumis à Une Pression Interne; University of Lorraine: Metz, French, 2008. [Google Scholar]
Properties | Values |
---|---|
Young’s Modulus | 207 GPa |
Poisson ratio | 0.3 |
Yield Stress | 340 MPa |
Ultimate tensile strength | 440 MPa |
Elongation to fracture | 35% |
Fracture Toughness | 95 |
Material | C | P | Al | Mn | S | Si | Fe |
---|---|---|---|---|---|---|---|
Tested steel | 0.135 | 0.013 | 0.027 | 0.665 | 0.002 | 0.195 | Bal. |
P264GH steel according to the Standard EN10028.2-92 | 0.18 | 0.025 | 0.02 | 1 | 0.015 | 0.4 | Bal. |
Crack Length Ratios (a/t) | Crack Position (x1 y1; x2 y2) (mm) | Applied Pressure (MPa) |
---|---|---|
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 | (−20 0; (−20 + a) 0) | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montassir, S.; Moustabchir, H.; Elkhalfi, A.; Scutaru, M.L.; Vlase, S. Fracture Modelling of a Cracked Pressurized Cylindrical Structure by Using Extended Iso-Geometric Analysis (X-IGA). Mathematics 2021, 9, 2990. https://doi.org/10.3390/math9232990
Montassir S, Moustabchir H, Elkhalfi A, Scutaru ML, Vlase S. Fracture Modelling of a Cracked Pressurized Cylindrical Structure by Using Extended Iso-Geometric Analysis (X-IGA). Mathematics. 2021; 9(23):2990. https://doi.org/10.3390/math9232990
Chicago/Turabian StyleMontassir, Soufiane, Hassane Moustabchir, Ahmed Elkhalfi, Maria Luminita Scutaru, and Sorin Vlase. 2021. "Fracture Modelling of a Cracked Pressurized Cylindrical Structure by Using Extended Iso-Geometric Analysis (X-IGA)" Mathematics 9, no. 23: 2990. https://doi.org/10.3390/math9232990
APA StyleMontassir, S., Moustabchir, H., Elkhalfi, A., Scutaru, M. L., & Vlase, S. (2021). Fracture Modelling of a Cracked Pressurized Cylindrical Structure by Using Extended Iso-Geometric Analysis (X-IGA). Mathematics, 9(23), 2990. https://doi.org/10.3390/math9232990