Planar Typical Bézier Curves Made Simple
Abstract
:1. Introduction: Typical Curves
- (i)
- Constant supplementary angle between consecutive control legs;
- (ii)
- Constant ratio between their lengths.
2. Sinusoidal Spirals of Negative Index
3. Coincidence between Spiral Segments and Typical Curves
3.1. Construction by Raising a Line to the Power in the Complex Plane
- (I)
- Each control leg sees with constant angle ;
- (II)
- The ratio between polar radii of consecutive points is the constant (7).
3.2. Particular Cases: Vertex at the Endpoint and Symmetric Segments
4. Properties of Typical Curves
4.1. Curvature
- Decreasing : Since moves away from , the angles must share their signs. This is tantamount to a positive numerator in the quotient (9), so that .
- Increasing : Reverse the parameterization of , by replacing . The above condition transforms to .
4.2. Parameter Value u for the Vertex
4.3. Subdivision at an Arbitrary Point
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAGD | Computer Aided Geometric Design |
PH | Pythagorean–Hodograph |
T-cubic | Tschirnhausen cubic |
References
- Levien, R.; Séquin, C. Interpolating Splines: Which is the fairest of them all? Comput.-Aided Des. Appl. 2009, 6, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Saito, T. Interactive aesthetic curve segments. Vis. Comput. 2006, 15, 879–891. [Google Scholar] [CrossRef]
- Meek, M.; Walton, D.J. The use of Cornu spirals in drawing planar curves of controlled curvature. J. Comput. Appl. Math. 1989, 25, 69–78. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhao, G.; Wang, A.; Li, S.; Cai, Z. Planar typical Bézier curves with a Single Curvature Extremum. Mathematics 2021, 9, 2148. [Google Scholar] [CrossRef]
- Mineur, Y.; Lichah, T.; Castelain, J.M.; Giaume, H. A shape controled fitting method for Bézier curves. Comput. Aided Geom. Des. 1998, 15, 879–891. [Google Scholar] [CrossRef]
- Farin, G. Class A Bézier curves. Comput. Aided Geom. Des. 2006, 15, 573–581. [Google Scholar] [CrossRef]
- Mineur, Y. A Shape Constrained Curve Approximation Method for Styling Surfaces Modeling. In Proceedings of the Posters Papers proceedings of WSCG’ 2003, 11th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’ 2003, Plzen, Czech Republic, 3–7 February 2003. [Google Scholar]
- Higashi, M.; Kaneko, K.; Hosaka, M. Generation of high quality curve and surface with smoothing varying curvature. In Eurographics’88: Proceedings of the European Computer Graphics Conference and Exhibition; Duce, D.A., Jancene, P., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1988; pp. 79–92. [Google Scholar]
- Higashi, M. High-quality solid-modelling system with free-form surfaces. Comput.-Aided Des. 1993, 25, 172–183. [Google Scholar] [CrossRef]
- Bizzarri, M.; Lávička, M.; Vršek, J. Note on planar Pythagorean hodograph curves of Tschirnhaus type. Comput. Aided Geom. Des. 2021, 89, 102022. [Google Scholar] [CrossRef]
- Farouki, R.T. Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable; Springer: Berlin, Germany, 2008. [Google Scholar]
- Farouki, R.T.; Giannelli, C.; Sestini, A. New Developments in Theory, Algorithms, and Applications for Pythagorean–Hodograph Curves. In Advanced Methods for Geometric Modeling and Numerical Simulation; Giannelli, C., Speleers, H., Eds.; Springer: Cham, Switzerland, 2019; pp. 127–177. [Google Scholar]
- Hoffmann, C.M.; Peters, J. Geometric constraints for CAGD. In Mathematical Methods for Curves and Surfaces; Daehlen, M., Lyche, T., Schumaker, L.L., Eds.; Vanderbilt University Press: Nashville, TN, USA, 1995; pp. 237–253. [Google Scholar]
- Meek, M.; Walton, D.J. Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 1997, 81, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Meek, M.; Walton, D.J. Hermite interpolation with Tschirnhausen cubic spirals. Comput. Aided Geom. Des. 1997, 14, 619–635. [Google Scholar] [CrossRef]
- Byrtus, M.; Bastl, B. Hermite interpolation by PH cubics revisited. Comput. Aided Geom. Des. 2010, 27, 622–630. [Google Scholar] [CrossRef]
- Farouki, R.T.; Peters, J. Smooth curve design with double-Tschirnhausen cubics. Annals Num. Math. 1996, 3, 63–82. [Google Scholar]
- Bastl, B.; Slabá, K.; Byrtus, M. Planar C1 Hermite interpolation with uniform and non-uniform TC-biarcs. Comput. Aided Geom. Des. 2013, 30, 58–77. [Google Scholar] [CrossRef]
- Cantón, A.; Fernández-Jambrina, L.; Vázquez-Gallo, M.J. Curvature of planar aesthetic curves. J. Comput. Appl. Math. 2021, 381, 113042. [Google Scholar] [CrossRef]
- Coxeter, H.S.M.; Greitzer, S.L. Geometry Revisited; The Mathematical Association of America: Washington, DC, USA, 1967. [Google Scholar]
- Ueda, K. A Sequence of Bézier Curves Generated by Successive Pedal-Point Constructions. In Curves and Surfaces with Applications in CAGD; Le Méhauté, A., Rabut, C., Schumaker, L.L., Eds.; Vanderbilt University Press: Nashville, TN, USA, 1997; pp. 427–434. [Google Scholar]
- Ueda, K. Pedal Curves and Surfaces. In Mathematical Methods in CAGD: Oslo 2000 (Innovations in Applied Mathematics); Lyche, T., Schumaker, L.L., Eds.; Vanderbilt University Press: Nashville, TN, USA, 2001; pp. 497–506. [Google Scholar]
- Sánchez-Reyes, J. p-Bézier curves, spirals, and sectrix curves. Comput. Aided Geom. Des. 2002, 19, 445–464. [Google Scholar] [CrossRef]
- Sánchez-Reyes, J. Single-valued curves in polar coordinates. Comput.-Aided Des. 1990, 22, 19–26. [Google Scholar] [CrossRef]
- Sánchez-Reyes, J. Offset-rational sinusoidal spirals in Bézier form. Comput. Aided Geom. Des. 2007, 24, 142–150. [Google Scholar] [CrossRef]
- Gray, A.; Abbena, E.; Salomon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Lawrence, J.D. A Catalog of Special Plane Curves; Dover: New York, NY, USA, 1972. [Google Scholar]
- Yates, R.C. Curves and Their Properties; The National Council of Teachers of Mathematics: Reston, VA, USA, 1974. [Google Scholar]
- Loria, G. Spezielle Algebraische und Transzendente Ebene Kurven: Theorie und Geschichte; Teubner: Leipzig, Germany, 1911. [Google Scholar]
- Gomes Teixeira, F. Traité des Courbes Spéciales, Remarquables Planes et Gauches, Tome II; Reprinted by Éditions Jacques Gabay: Paris, France, 1909. [Google Scholar]
- Shikin, E. Handbook and Atlas of Curves; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Weiss, G.; Martini, H. On Curves and Surfaces in Illumination Geometry. J. Geom. Graph. 2000, 2, 169–180. [Google Scholar]
- Kuczmarski, F. Rolling Sinusoidal Spirals. Amer. Math. Monthly 2012, 119, 451–467. [Google Scholar] [CrossRef]
- Rutter, J.W. Geometry of Curves; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Choi, J.W.; Curry, R.E.; Elkaim, G.H. Minimizing the maximum curvature of quadratic Bézier curves with a tetragonal concave polygonal boundary constraint. Comput.-Aided Des. 2012, 44, 311–319. [Google Scholar] [CrossRef]
- Yan, J.; Schiller, S.; Wilensky, G.; Carr, N.; Schaefer, S. κ-Curves: Interpolation at Local Maximum Curvature. ACM Trans. Graph. 2017, 36, 1–7. [Google Scholar] [CrossRef]
- Bartoň, J.; Elber, G. Spiral fat arcs—Bounding regions with cubic convergence. Graph. Models 2011, 73, 50–57. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Reyes, J. Planar Typical Bézier Curves Made Simple. Mathematics 2021, 9, 3017. https://doi.org/10.3390/math9233017
Sánchez-Reyes J. Planar Typical Bézier Curves Made Simple. Mathematics. 2021; 9(23):3017. https://doi.org/10.3390/math9233017
Chicago/Turabian StyleSánchez-Reyes, Javier. 2021. "Planar Typical Bézier Curves Made Simple" Mathematics 9, no. 23: 3017. https://doi.org/10.3390/math9233017
APA StyleSánchez-Reyes, J. (2021). Planar Typical Bézier Curves Made Simple. Mathematics, 9(23), 3017. https://doi.org/10.3390/math9233017