Ulam Stability of n-th Order Delay Integro-Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Stability Results for the Delay Integro-Differential Equation
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zhou, Y.; O’Regan, D. Hyers-ulam stability and existence of solutions for fractional differential equations with mittag-leffler kernel. Chaos Solitons Fractals 2020, 132, 1–8. [Google Scholar] [CrossRef]
- Liu, K.; Feckan, M.; Wang, J. A fixed-point approach to the hyers-ulam stability of caputo-fabrizio fractional differential equations. Mathematics 2020, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Brzdek, J. Hyers-ulam stability of the delay equation y(t) = y(t − τ). Abstr. Appl. Anal. 2010, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Zada, A.; Faisal, S.; Li, Y. On the Hyers–Ulam Stability of First-Order Impulsive Delay Differential Equations. J. Funct. Spaces Appl. 2016, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zada, A.; Shah, S.O. Hyers-Ulam Stability of First-Order Non-Linear Delay Differential Equations with Fractional Integrable Impulses. Hacet. J. Math. Stat. 2018, 47, 1196–1205. [Google Scholar] [CrossRef]
- Luo, D.; Luo, Z. Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses. Math. Slovaca 2020, 70, 1231–1248. [Google Scholar] [CrossRef]
- Kendre, S.D.; Unhale, S.I. On existence, uniqueness and Ulam’s stability results for boundary value problems of fractional iterative integrodifferential equations. J. Appl. Math. Comput. 2020, 64, 503–517. [Google Scholar] [CrossRef]
- Kucche, K.D.; Shikhare, P. Ulam Stabilities for Nonlinear Volterra Delay Integro-differential Equations. J. Contemp. Math. Anal. 2019, 54, 276–287. [Google Scholar] [CrossRef]
- Huan, D.D.; Gao, H. A note on the existence of stochastic integro-differential equations with memory. Math. Methods Appl. Sci. 2015, 38, 1–15. [Google Scholar] [CrossRef]
- Mokkedem, F.Z.; Fu, X. Approximate controllability of semi-linear neutral integro-differential systems with finite delay. Appl. Math. Comput. 2014, 242, 202–215. [Google Scholar] [CrossRef]
- Desch, W.; Grimmer, R.; Schappacher, W. Wellposedness and wave propagation for a class of integrodifferential equations in Banach space. J. Differ. Equ. 1988, 74, 391–411. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Fujita, K. Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 1997, 27, 309–321. [Google Scholar]
- Berinde, V. Existence and approximation of solutions of some first order iterative differential equations. Miskolc Math. Notes 2010, 11, 13–26. [Google Scholar] [CrossRef]
- Mi, T.; Stepan, G.; Takacs, D.; Chen, N. Vehicle shimmy modeling with pacejka’s magic formula and the delayed tire model. J. Comput. Nonlinear Dyn. 2020, 15, 031005. [Google Scholar] [CrossRef]
- He, Z.; Ni, D.; Zheng, M. Ergodicity and optimal control of a size-structured population model with delay. J. Syst. Sci. Math. Sci. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Wei, W. A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. Results Math. 2010, 58, 379–397. [Google Scholar] [CrossRef]
- Otrocol, D.; Ilea, V. Ulam stability for a delay differential equation. Cent. Eur. J. Math. 2013, 11, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Kendre, S.D.; Kharat, V.V.; Narute, R. On existence of solution for mixed iterative integrodifferential equations. Adv. Differ. Equ. Control Process. 2015, 15, 53–66. [Google Scholar] [CrossRef]
- Sevgin, S.; Sevli, H. Stability of a nonlinear Volterra integro-differential equation via a fixed point approach. J. Nonlinear Sci. Appl. 2016, 9, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Kishor, D.K.; Pallavi, U.S. Ulam–Hyers Stability of Integrodifferential Equations in Banach Spaces via Pachpatte’s Inequality. Asian-Eur. J. Math. 2018, 11, 1–19. [Google Scholar] [CrossRef]
- Zada, A.; Ali, W.; Park, C. Ulam’ type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. Appl. Math. Comput. 2019, 350, 60–65. [Google Scholar] [CrossRef]
- Folland, G.B. Advanced Calculus; Prentice Hall: Indianapolis, IN, USA, 2001. [Google Scholar]
- Pachpatte, B.G. Inequalities for Differential and Integral Equations; Academic Press: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Yuan, Z.; Yuan, X.; Meng, F.; Zhang, H. Some new delay integral inequalities and their appplications. Appl. Math. Comput. 2009, 208, 231–237. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Meng, F. Ulam Stability of n-th Order Delay Integro-Differential Equations. Mathematics 2021, 9, 3029. https://doi.org/10.3390/math9233029
Wang S, Meng F. Ulam Stability of n-th Order Delay Integro-Differential Equations. Mathematics. 2021; 9(23):3029. https://doi.org/10.3390/math9233029
Chicago/Turabian StyleWang, Shuyi, and Fanwei Meng. 2021. "Ulam Stability of n-th Order Delay Integro-Differential Equations" Mathematics 9, no. 23: 3029. https://doi.org/10.3390/math9233029
APA StyleWang, S., & Meng, F. (2021). Ulam Stability of n-th Order Delay Integro-Differential Equations. Mathematics, 9(23), 3029. https://doi.org/10.3390/math9233029