Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms
Abstract
:1. Introduction
Governing Model
2. Mathematical Preliminaries
3. Enhanced Kudryashov Method
4. Kerr Law
5. Power Law
6. Parabolic Law
7. Dual Power Law
8. Polynomial Law
9. Triple Power Law
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudryashov, N.A. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 2020, 66, 401–405. [Google Scholar] [CrossRef]
- Kudryashov, N.A. The generalized Duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 2021, 93, 105526. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Model of propagation pulses in an optical fiber with a new law of refractive indices. Optik 2021, 248, 168160. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2020, 206, 163550. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 2020, 371, 124972. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of an equation with arbitrary refractive index. Regul. Chaotic Dyn. 2020, 25, 537–543. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
- Kan, K.V.; Kudryashov, N.A. Solitary waves described by a high–order system in optical fiber Bragg gratings with arbitrary refractive index. Math. Methods Appl. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary wave solutions of hierarchy with non–local nonlinearity. Appl. Math. Lett. 2020, 103, 106155. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik 2020, 212, 164750. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary waves of the non–local Schrödinger equation with arbitrary refractive index. Optik 2021, 231, 166443. [Google Scholar] [CrossRef]
- Qiu, Y.; Malomed, B.A.; Mihalache, D.; Zhu, X.; Peng, J.; He, Y. Generation of stable multi–vortex clusters in a dissipative medium with anti–cubic nonlinearity. Phys. Lett. A 2019, 383, 2579–2583. [Google Scholar] [CrossRef] [Green Version]
- Shwetanshumala, S. Temporal solitons of modified complex Ginzberg–Landau equation. Prog. Electromagn. Res. Lett. 2008, 3, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.M. Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg–Landau equations. Appl. Math. Lett. 2006, 19, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Liu, W. Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher–order effects. Appl. Math. Lett. 2019, 98, 171–176. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; Biswas, A.; Ekici, M.; Khan, S.; Alshomrani, A.S. Pure–cubic optical soliton perturbation with complex Ginzburg–Landau equation having a dozen nonlinear refractive index structures. J. Commun. Technol. Electron. 2021, 66, 481–544. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, C.-Y.; Zeng, H.-B. Cascade replication of soliton solutions in the one-dimensional complex cubic–quintic Ginzburg–Landau equation. Phys. Lett. A 2020, 384, 126395. [Google Scholar] [CrossRef]
- Huang, C.; Li, Z. New exact solutions of the fractional complex Ginzburg–Landau equation. Math. Probl. Eng. 2021, 2021, 6640086. [Google Scholar] [CrossRef]
- Kudryashov, N.A. First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput. 2020, 386, 125407. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Malomed, B. Solitary pulses and periodic waves in the parametrically driven complex Ginzburg–Landau equation. J. Phys. Soc. Jpn. 2003, 72, 1360–1365. [Google Scholar] [CrossRef] [Green Version]
- Avci, M.; Süer, B. On a nonlocal problem involving a nonstandard nonhomogeneous differential operator. J. Elliptic Parabol. Equ. 2019, 5, 47–67. [Google Scholar] [CrossRef]
- Ginzburg, V.; Landau, L. On the theory of superconductivity. Zh. Exper. Teor. Fiz. 1950, 20, 1064–1082. [Google Scholar]
- Bethuel, F.; Brezis, H.; Hlein, F. Ginzburg–Landau Vortices; Birkhuser: Basel, Switzerland, 1994. [Google Scholar]
- Comte, M.; Mironescu, P. Minimizing properties of arbitrary solutions to the Ginzburg–Landau equation. Proc. R. Soc. Edinb. Sect. A Math. 1999, 129, 1157–1169. [Google Scholar] [CrossRef]
- Mironescu, P. On the stability of radial solutions of the Ginzburg–Landau equation. J. Func. Anal. 1995, 130, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Struwe, M. Une estimation asymptotique pour le modle de Ginzburg–Landau. Comptes Rendus Acad. Sci. Paris 1993, 317, 677–680. [Google Scholar]
- Akram, G.; Mahak, N. Application of the first integral method for solving (1+1)–dimensional cubic–quintic complex Ginzburg–Landau equation. Optik 2018, 164, 210–217. [Google Scholar] [CrossRef]
- Biswas, A.; Yildirim, Y.; Ekici, M.; Guggilla, P.; Khan, S.; Gonzalez-Gaxiola, O.; Alzahrani, A.K.; Belic, M.R. Cubic–quartic optical soliton pertubation with complex Ginzburg–Landau equation. J. Appl. Eng. Sci. 2021, 24, 937–1004. [Google Scholar]
- Biswas, A.; Kara, A.H.; Sun, Y.; Zhou, Q.; Yildirim, Y.; Alshehri, H.M. Conservation laws for pure–cubic optical solitons with complex Ginzburg–Landau equation having several refractive index structures. Results Phys. 2021, 31, 104901. [Google Scholar] [CrossRef]
- Mou, D.S.; Fang, J.J.; Fan, Y. Discrete localized excitations for discrete conformable fractional cubic–quintic Ginzburg–Landau model possessing the non–local quintic term. Optik 2021, 244, 167554. [Google Scholar] [CrossRef]
- Naghshband, S.; Araghi, M.A.F. Solving generalized quintic complex Ginzburg–Landau equation by homotopy analysis method. Ain Shams Eng. J. 2018, 9, 607–613. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, E.M.E.; Gepreel, K.A.; El-Horbaty, M.; Biswas, A.; Yıldırım, Y.; Alshehri, H.M. Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms. Mathematics 2021, 9, 3270. https://doi.org/10.3390/math9243270
Zayed EME, Gepreel KA, El-Horbaty M, Biswas A, Yıldırım Y, Alshehri HM. Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms. Mathematics. 2021; 9(24):3270. https://doi.org/10.3390/math9243270
Chicago/Turabian StyleZayed, Elsayed M. E., Khaled A. Gepreel, Mahmoud El-Horbaty, Anjan Biswas, Yakup Yıldırım, and Hashim M. Alshehri. 2021. "Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms" Mathematics 9, no. 24: 3270. https://doi.org/10.3390/math9243270
APA StyleZayed, E. M. E., Gepreel, K. A., El-Horbaty, M., Biswas, A., Yıldırım, Y., & Alshehri, H. M. (2021). Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms. Mathematics, 9(24), 3270. https://doi.org/10.3390/math9243270